Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food-crop yields in future greenhouse-gas conditions lower than expected

27.07.2006
Open-air field trials involving five major food crops grown under carbon-dioxide levels projected for the future are harvesting dramatically less bounty than those raised in earlier greenhouse and other enclosed test conditions – and scientists warn that global food supplies could be at risk without changes in production strategies.

The new findings are based on on-going open-air research at the University of Illinois at Urbana-Champaign and results gleaned from five other temperate-climate locations around the world. According to the analysis, published in the June 30 issue of the journal Science, crop yields are running at about 50 percent below conclusions drawn previously from enclosed test conditions.

Results from the open-field experiments, using Free-Air Concentration Enrichment (FACE) technology, "indicate a much smaller CO2 fertilization effect on yield than currently assumed for C3 crops, such as rice, wheat and soybeans, and possibly little or no stimulation for C4 crops that include maize and sorghum," said Stephen P. Long, a U. of I. plant biologist and crop scientist.

FACE technology, such as the SoyFACE project at Illinois, allows researchers to grow crops in open-air fields, with elevated levels of carbon dioxide simulating the composition of the atmosphere projected for the year 2050. SoyFACE has added a unique element by introducing surface-level ozone, which also is rising. Ozone is toxic to plants. SoyFACE is the first facility in the world to test both the effects of future ozone and CO2 levels on crops in the open air.

Older, closed-condition studies occurred in greenhouses, controlled environmental chambers and transparent field chambers, in which carbon dioxide or ozone were easily retained and controlled.

Such tests provided projections for maize, rice, sorghum, soybean and wheat – the world's most important crops in terms of global grain production. By 2050 carbon dioxide levels may be about 1.5 times greater than the current 380 parts per million, while daytime ozone levels during the growing season could peak on average at 80 parts per billion (now 60 parts per billion).

Older studies, as reviewed by the Intergovernmental Panel on Climate Change, suggest that increased soil temperature and decreased soil moisture, which would reduce crop yields, likely will be offset in C3 crops by the fertilization effect of rising CO2, primarily because CO2 increases photosynthesis and decreases crop water use.

Although more than 340 independent chamber studies have been analyzed to project yields under rising CO2 levels, most plants grown in enclosures can differ greatly from those grown in farm fields, Long said. FACE has been the only technology that has tested effects in real-world situations, and, to date, for each crop tested yields have been "well below (about half) the value predicted from chambers," the authors reported. The results encompassed grain yield, total biomass and effects on photosynthesis.

The FACE data came from experimental wheat and sorghum fields at Maricopa, Ariz.; grasslands at Eschikon, Switzerland; managed pasture at Bulls, New Zealand; rice at Shizukuishi, Japan; and soybean and corn crops at Illinois. In three key production measures, involving four crops, the authors wrote, just one of 12 factors scrutinized is not lower than chamber equivalents, Long said.

"The FACE experiments clearly show that much lower CO2 fertilization factors should be used in model projections of future yields," the researchers said. They also called for research to examine simultaneous changes in CO2, O3, temperature and soil moisture."

While projections to 2050 may be too far out for commercial considerations, they added, "it must not be seen as too far in the future for public sector research and development, given the long lead times that may be needed to avoid global food shortage."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>