Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undersea Vehicles to Study Formation of Gold and Other Precious Metals On the Pacific Ocean Floor

17.07.2006
An international team of scientists will explore the seafloor near Papua New Guinea in the western Pacific Ocean later this month with remotely operated and autonomous underwater vehicles, investigating active and inactive hydrothermal vents and the formation of mineral deposits containing copper, gold and other commercially valuable minerals.

The cruise is a joint expedition between Woods Hole Oceanographic Institution (WHOI) and Nautilus Minerals Inc. of Vancouver, British Columbia, a mining exploration company that holds exploration leases in the Bismarck Sea within the territorial waters of Papua New Guinea. Nautilus is the first firm to commercially explore the ocean floor for economically viable massive sulfide deposits, and is interested in understanding the size and mineral content of the seafloor massive sulfide systems.

The joint expedition includes a 32-day WHOI research program funded by the U.S. National Science Foundation to the Pacmanus vent sites in the Eastern Manus Basin. The remotely operated vehicle Jason will be used to survey and map the vent areas around an Ocean Drilling Program hole drilled in 2000. Nautilus will fund an additional 10-day program to explore and sample the Vienna Woods sulfide prospects on the Manus Ridge, northwest of the Pacmanus study area.

Geophysicist Maurice Tivey of WHOI will head the 42-day expedition, which begins July 21 from Rabaul, Papua New Guinea, aboard the research vessel Melville, operated by the Scripps Institution of Oceanography. Tivey and geochemists Wolfgang Bach of the University of Bremen (previously at WHOI) and Jeff Seewald and Meg Tivey of WHOI will map, collect samples and take high-resolution images of the seafloor at several locations within the territorial waters of Papua New Guinea. The cruise ends September 1 at Suva, Fiji.

Tivey and his co-investigators are interested in the geochemistry and structure of the seafloor and the formation of mineral deposits along mid-ocean and back-arc ridge systems, where new ocean crust is formed. The team will use the remotely operated vehicle Jason and the Autonomous Benthic Explorer (ABE), both developed and operated by WHOI and veterans of many expeditions to hydrothermal vent sites around the world.

Two areas will be explored, one in the Eastern Manus Basin in the Bismarck Sea known as the Pacmanus vent site and the other Vienna Woods, an area of exposed massive sulfide on the Manus Ridge, a small mid-ocean ridge spreading center to the northwest of the Pacmanus site. The Pacmanus site is in 1,700 meters of water (about 4,500 feet), while the Vienna Woods site is in 2,500 meters (about 8,000 feet).

“There are differences in the compositions of hosts rock at the two areas, as well as differences in the geologic and tectonic settings,” Tivey, an associate scientist in the WHOI Geology and Geophysics Department, said. In the Eastern Manus Basin at the Pacmanus vents, the host rocks are felsic or silica-rich compared to the more typical mid-ocean ridge basalt found at the Vienna Woods site, providing a contrast in host rock geochemistry.

“It has been suggested that the difference in the chemistry of the host rock is reflected in the composition of the sulfide chimneys and deposits, with deposits hosted in the more silica-rich rocks being richer in gold and other precious metals” Tivey said. “However, there are other factors that can affect vent fluid and sulfide deposit composition. For example, some hydrothermal fluids from back-arc sites appear to have a signature indicative of a magma chamber source, with magmatically-derived fluids possibly affecting the hydrothermal systems.”

The research program is designed to determine what factors may be affecting vent deposit chemistry, Tivey said. In addition to sampling the deposits and collecting fresh and altered host rock, the researchers will collect vent fluids using gas-tight samplers to study the possible influence of both magmatic volatiles and host rock composition. They will also map the seafloor, and below the seafloor using geophysical techniques, to better discern the geologic history and structure of the sites.

Tivey and other scientists and students from WHOI will be joined by colleagues from Towson University, University of South Florida, Bridgewater State College and the U.S. Geological Survey, the University of Bremen in Germany, Seoul University in South Korea, the Commonwealth Scientific and Industrial Research Organization (CSIRO) of Australia, the Geological Survey of Papua New Guinea, the University of Papua New Guinea, and Nautilus Minerals.

The expedition is funded by the National Science Foundation, Nautilus Minerals Inc., WHOI and the respective research agencies of the participants.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>