Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where climate is made in a greenhouse world

02.06.2006


New scientific results for the Late Cretaceous greenhouse indicate radically different climatic mechanisms operating about 75-90 million years ago compared to the ones that control today’s climate. The study, published on 29 May 2006 in “Palaeogeography, Palaeoclimatology, Palaeoecology” as part of a special issue on “Causes and Consequence of Marine Organic Carbon Burial Through Time” by Sascha Floegel from the IFM-GEOMAR in Kiel/Germany and Thomas Wagner from the University of Newcastle upon Tyne/UK aims to identify the main ‘climate kitchen’ in a world with about 5-9°C warmer global temperatures than today.



The researchers focus their interest on the causal relationships and feedbacks between the tropics and higher latitudes. Using marine geological records and data from global paleoclimate simulations they identify a previously unrecognized link between higher latitude climate dynamics and tropical African climate, the latter leading to exceptionally high burial of organic carbon in the deep tropical Atlantic. Marine geological record show that enhanced burial of organic carbon in the deep sea was confined to short time envelops of about 5 thousand years that reoccurred over millions of years at a regular pattern (see Beckmann and co-workers, published 8 September 2005 in Nature 437).

Climate modelling is one key technique to identify and understand the larger-scale mechanisms that result in geological evidence. By varying one of Earth’s orbital parameters, the precession of the equinoxes, the modelling setup used in this study provides new insights to the dynamics of global climate during past greenhouse conditions. Accordingly, changes in the amount of energy approaching the top of the atmosphere, called “insolation”, finally triggered cyclic variations of the tropical water cycle in tropical Africa. Periods of enhanced precipitation and freshwater runoff then resulted in massive burial of organic carbon at the sea floor suggesting that processes in the atmosphere drive changes in the ocean. The remaining, fundamental question on the source area(s) where cyclic fluctuations in tropical water cycling and marine carbon burial were triggered was addressed using global climate simulation.


Applying four different orbital configurations of one complete precession cycle the model identifies cross-latitudinal variations of atmospheric pressure systems, fluctuations in the magnitude and direction of surface winds, and associated precipitation and runoff patterns. Previously unrecognized, the model identifies the strongest variations in atmospheric pressure above the South Atlantic at mid-southern latitudes between 25–55°S. Establishment of an atmospheric teleconnection between this area and tropical Africa, however, is limited to one specific orbital configuration, which lasted for about 5 thousand years and caused strongest climate contrasts in a seasonal cycle.

These new results challenge current notions on role of the tropics as main driver of Cretaceous climate. They rather support the conclusion that tropical climate in a greenhouse world is ultimately triggered by climate change at mid-southern latitudes, with precipitation and river discharge being the transport mechanisms.

Today the tropics control a big fraction of Earth’s climate. The new findings reported here suggest that the mid-latitudes will have a much stronger impact on low latitude climate system at predicted future levels of atmospheric CO2. This conclusion has severe consequences for the future low latitude water cycle and associated nutrient and carbon fluxes to coastal areas. The latter fluxes from the continent strongly influence surface ocean productivity, O2 consumption in the water column and thus marine ecosystems, and many other processes affecting the global carbon balance. The broader implications support substantial interaction between the water cycle and atmospheric circulation on regional and hemispheric scales during times of global warmth. As evident from this study we probably still do not realise all the relevant processes that drive future global warming. Knowing them, however, is critical to get prepared and mitigate the effects for society and ecosystems.

Professor Thomas Wagner | alfa
Further information:
http://www.ncl.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit
20.11.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>