Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method Confirms Importance of Fungi in Arctic Nitrogen Cycle

10.05.2006


Cortinarius favrei grows in the midst of dwarf Betula and Salix, Vaccinium, and Eriophorum in the Alaskan tundra. At the Arctic LTER site, isotopic measurements indicate that mycorrhizal fungi function similar to this species contribute 60-90% of their plant’s nitrogen.


Technique Could be Applied to All Nitrogen-Poor Ecosystems

A new method to calculate the transfer of nitrogen from Arctic mushrooms to plants is shedding light on how fungi living symbiotically on plant roots transfer vital nutrients to their hosts. The analytical technique, developed by John E. Hobbie, MBL Distinguished Scientist and co-director of the laboratory’s Ecosystems Center and his son, Erik A. Hobbie of the University of New Hampshire, may be applied to nearly all conifers, oaks, beeches, birch and shrubs such as blueberry and cranberry—all nitrogen-poor ecosystems—and will be an important tool for future studies of plant nitrogen supply.

It has long been known when soil nitrogen is in short supply, mycorrhizal fungi (those living symbiotically on the roots of plants) transfer nutrients to their host plants in exchange for plant sugars derived from photosynthesis, but the rates of transfer have never been quantified in the field. John and Erik Hobbie’s study, published in the April 2006 issue of the journal Ecology, quantifies the role of mycorrhizal fungi in nitrogen cycling for the first time through measurements of the natural abundance of nitrogen isotopes in soils, mushrooms and plants. The researchers tested their technique using data from the Arctic LTER (Long Term Ecological Research) site near Toolik Lake, Alaska, in the northern foothills of the Brooks Range.



Previous research has found that when mycorrhizal fungi in the soil take up nitrogen from the soil and transfer it to small trees and shrubs, the heavy nitrogen isotope, nitrogen-15, is reduced in abundance in the plants and enriched in the fungi. Using a mass balance approach, an accounting of material entering and leaving a system, the researchers quantified the transfer of nitrogen and found that 61-86% of the nitrogen in plants at the site entered through fungal symbionts,

“Previous studies at this Arctic site have found a large range of nitrogen isotope content in plants and attributed the range to plants tapping into several different sources of nitrogen in the soil,” says John Hobbie. “Our study indicates that the differences can be attributed mainly to the presence or absence of symbiotic mycorrhizal fungi.”

The researcher’s new technique is shedding light not only on the nitrogen cycle in arctic tundra ecosystems, but can be applied to other nitrogen-poor ecosystems. “In the future, studies of plant nitrogen supply in all nitrogen-poor ecosystems must include these important transfers between plants and fungi,” says Hobbie.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Rethinking the science of plastic recycling
24.10.2019 | DOE/Argonne National Laboratory

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

Antibiotics: New substances break bacterial resistance

12.11.2019 | Life Sciences

Using mountains for long-term energy storage

12.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>