Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rivers, water and sediments

22.02.2006


Important rivers usually have a number of tributary streams which have their sources in the mountains. It is not just water that goes on the journey but sediments, stones and other material. These materials are transported dissolved, in suspension or deposited as sediment at the bottom of the river.



A research team from the Department of Geodynamics at the University of the Basque Country (EHU-UPV) have begun a study in order to find out the amount of sediments transported from the three main river basins of the province of Gipuzkoa in the Basque Country, i.e. the Urola, Urumea and Deba river basins. The aim is to analyse how factors, both natural and non-natural, affect the presence and the transport of these sediments in these waters.

To this end, the upper basins of the aforementioned rivers were selected: Añarbe in the case of the Urumea river, Barrendiola in the case of river Urola and Aixola in the case of the Deba. These three basins were chosen after an exhaustive analysis of their physical parameters (geology, geomorphology, vegetation, hydrology, soils, and so on). Moreover, the three basins have different characteristics and, thus, are representative of different environments in Gipuzkoa.


The turbidity and the concentration of sediments

In order to analyse these sediments, the water volume/flow of the selected streams are measured as well as the precipitations and turbidity thereof. Ongoing measurements have been taking place for two years now since the project started.

Turbidity depends on the amount of sediments transported in the water. This parameter is measured by means of a probe immersed in the water.

Each time the waters rise due to rainfall, the concentration of the sediments is measured. In order to carry this operation out, a device is immersed in the water to take samples from the stream. When it rains, this sampler is triggered and the bottles are filled with river water. The research worker collects these samples and replaces the emptied bottles for the next rise in water level.

These samples are then taken to the laboratory where they are filtered and the amount of sediment in them calculated. In this way the concentration of the sediments is known.

Although turbidity and the concentration of sediments are related parameters, it is not easy to fix this relationship directly. The size, type, colour and so on of the sediments may vary the turbidity while the concentration remains the same. Once the relation between these two parameters is established, the concentration of sediments can be worked out, given that the turbidity is being measured in an ongoing manner. This relation is usually different for each river basin.

Human activity versus natural basins

The concentration of the sediments transported by rivers is not only related to rainfall and the volume of water in the river; the features of the basin also have a bearing. Given that the three basins chosen for this study have different characteristics (size, lithology, soils, vegetation, land use, climatic conditions, geomorphology, and so on), a comparison of the results demonstrates that the main factors that influence the presence of the sediments for each basin are different.

Moreover, the use that the soil is put to and the human activity in the river basins also have considerable bearing on the results. For example, if trees are felled on a riverbank, the soil becomes unprotected and, thus, rainwater will wash out much more sediment into the stream. Continuously measuring the turbidity of the stream means that we can know the impact of such activities on the quantity of sediments present in the basin. Moreover, if the measurements are taken over a long period of time, it is also possible to observe the duration of the effects of such felling.

Another activity that can vary the amount of sediments is fill-in work. Fill-in earth is not usually compact nor is it protected by vegetation. So, until the earth becomes compact and covered by grass, greater amounts of sediments will reach the basin.

Reservoirs overflowing

The three river basins studied supply water to their respective reservoirs. This is why another objective of the researchers was to find out how much of the sediments reached these artificial lakes. Particles in the water are deposited as sediment at the bottom of these and, little by little, the sediment builds up and will fill the reservoir. Thus, the data also calculates how long these reservoirs can continue to function as such. For example, in the Ebro basin there are reservoirs that have become full of sediment. The situation in our three basins is not so serious; it has not reached the stage of filling the reservoirs.

In future, researchers wish to undertake studies higher up in the basins in order to take measurements of the tributaries there. Moreover, they are planning to analyse the chemical characteristics of the water from these springs and rivers.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=893

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>