Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic waves

20.02.2006


Red tide impacts increasing for endangered manatees and humans




According to statistics released in January 2006, the year 2005 was the second deadliest on record for Florida’s endangered manatee population. One of the leading causes of fatalities was the toxins produced by "red tide" blooms of the alga Karenia brevis, which appear to be growing increasingly common in Florida. A recently completed collaborative study now suggests a surprisingly tight connection between the effects of the toxins on manatees and on humans, and potential implications for human impacts.

On Saturday, Feb. 18, Gregory Bossart, a marine mammal veterinarian and pathologist at the Harbor Branch Oceanographic Institution in Ft. Pierce, Fla., will discuss results of the study during a 9:00 a.m. Central Time press conference at the Annual Meeting of the American Association for the Advancement of Science, and in more detail at a scientific session later that day at 2:30 p.m. Central Time.


"It appears that these red tide events are increasing in nature, especially on Florida’s west coast," says Bossart, who directs the Harbor Branch Marine Mammal Research and Conservation Division. "I think that manatees and other animals impacted by these events are sentinels for serious environmental and human problems, " he says, "and in fact our research makes a strong case for potentially severe human red tide impacts."

Hoping to determine if brevetoxins are having an impact on humans that parallels increasing threats to manatees, Bossart and colleagues began a National Institutes of Health (NIH)-funded 5-year study of the problem in 2000. The project included scientists from the University of North Carolina, Wilmington, the University of Miami in Florida, Mote Marine Laboratory in Sarasota, Fla., and the Lovelace Respiratory Research Institute in Albuquerque, N.M., as well as other scientists from Harbor Branch.

Researchers have been familiar with the human threats posed by brevetoxin-tainted shellfish, which can cause neurotoxic shellfish poisoning. The focus of the NIH project was instead the impacts of brevetoxin inhalation on humans , which were far less understood.

As one component of the work, the team reviewed records from the Florida Department of Health that showed the number of people in affected areas admitted to emergency rooms with respiratory problems such as bronchitis, or asthma flare ups, sharply increases during red tide blooms.

"What’s disturbing," says Bossart, "is that humans appear to respond to prolonged brevtoxin exposure in a way similar to manatees that die from it."

To better understand those human effects, a key component of the NIH project was a study of the impacts of brevetoxin inhalation on mice. Interestingly, the researchers have not been able to mimic in mice the inhalation effects observed in humans and manatees, illustrating the tie between the health of both. However, the team did find that the toxins caused immune suppression in the mice, which suggests that the impacts of the red tide problem on manatees and humans may be more far-reaching than previously realized. If brevetoxins similarly suppress human and manatee immune systems, as Bossart believes is likely, then it could open those exposed to brevetoxins to ailments not currently associated with the red tides. This would pose a serious problem to residents of southwest Florida, where red tide events have been most severe, and also to a lesser extent people living at other areas around the Gulf of Mexico and Florida’s Atlantic coast where red tides also occur.

Bossart believes that increasing brevetoxin woes for both manatees and humans are good examples of a problem he calls "environmental distress syndrome". The theory is that ecological and other changes associated with human activities are expanding the reach of existing disease threats in the marine environment and enabling the emergence of new disease-causing agents. Bossart and colleagues have, for example, recently documented a number of new viruses in dolphins and other marine mammals. In parallel, marine mammals may be becoming increasingly susceptible to these emerging and existing diseases as a result of poor environmental conditions causing such problems as degraded immune systems. Though the topic remains controversial, some scientists have suggested that red tide events are increasing as a result of human activities, namely increasing nutrient pollution through runoff and other problems that may fuel red tide growth.

Through earlier research, Bossart and colleagues developed the first sensitive test for the presence of brevetoxins in manatee tissue. This was a key advancement, as positive determination of toxin presence had remained an elusive goal. Relying partially on that test, an interdisciplinary group of researchers discovered recently that manatees can be killed not just by inhaling brevetoxins during a red tide bloom, but also by brevetoxins sequestered in seagrasses eaten long after a bloom has dissipated. These results, published in Nature in 2005, further strengthen the human-manatee tie on brevetoxin effects as humans also face serious health threats from brevetoxins sequestered in seafood.

Mark Schrope | EurekAlert!
Further information:
http://www.hboi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>