Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better fuel cells through quantum mechanics

17.02.2006


Fuel cells must be made more efficient if they are to provide a viable alternative to traditional energy sources, and the choice of materials is crucial to how efficient they are. New findings from scientists at the Royal Institute of Technology (KTH) in Stockholm, Uppsala University, and Linköping University are opening new ways of finding optimal materials for better fuel cells much more quickly.


In the future solid oxide fuel cells may supply residential areas like Stockholm with electricity. In a solid oxide fuel cell, chemically stored energy is converted to electricity with a high degree of efficiency. The figure illustrates this with the chemical reaction between oxygen and hydrogen, which yields water (plus electricity). The article by Andersson et al. explains how the electrolyte should be constructed for optimal performance.



Using methods of calculation from quantum mechanics, the researchers managed to find a better way of understanding the connection between the atomic structure of an element and its capacity to conduct oxygen ions, which is key to the efficiency of fuel cells that use solid oxides as electrolyte materials (so-called solid oxide fuel cells).

The faster the transport of oxygen ions through the material occurs, the better the fuel cell will function. The findings are now being presented in the prestigious American scientific journal Proceedings of the National Academy of Sciences, PNAS.


The development of better materials for environmentally friendly energy sources is high on the agenda all over the world. Fuel cells are an example of a system that converts chemical energy directly to electricity in a highly efficient way (for instance, hydrogen + oxygen = water + electricity).

Thus far scientists have found suitable electrolyte materials by trial and error and through empirical experience, which has meant that progress has been slow. Many of the materials used today have been in use for 25 years. The new calculation methods open up entirely new vistas.

“The methods we use to theoretically calculate an element’s capacity to conduct ions enable us to test many more substances than before. Even though the calculations take considerable time, it is both faster and cheaper than testing all of these materials in practice,” says David Andersson, a doctoral student at the Section for Applied Materials Physics at KTH, one of the scientists behind the article.

The scientists have studied how the admixture of tiny quantities of other elements (dopants) to cerium oxide, CeO2, affects how easily oxygen ions can be transported through the material. The quantum mechanical calculations indicate what type of elements may be suitable as dopants, a huge help in work with optimizing future solid oxide fuel cells.

New electrolyte materials not only increase the efficiency of fuel cells; they also help open up new spheres of use. Today’s solid oxide fuel cells normally work at temperatures around 1,000 degrees centigrade. This places great demands on the materials surrounding the fuel cell, making them expensive.

“With other electrolyte materials than those we have today, the working temperature and thereby the cost of the materials surrounding the fuel cells could be brought down. Lower temperatures would also open up the possibility of portable variants of fuel cells,” says David Andersson.

These new findings also make it possible to improve other applications where oxygen ion transport is important, such as sensors that meter the oxygen content of various environments.

Magnus Myrén | alfa
Further information:
http://www.kth.se

More articles from Ecology, The Environment and Conservation:

nachricht Loss of habitat causes double damage to species richness
02.04.2019 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>