Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air: radical purification

26.01.2006


Scientists from the University of Nizhny Novgorod believe that ozone, an original synthetic porous material called KhIPEK and a special catalyst will protect us from the harmful effect of potentially hazardous matter – chemical and biological substances. The research by chemists and biochemists is supported by the International Science and Technology Centre, which has placed information on this promising development on its website (http://tech-db.istc.ru).



Chemically and biologically active substances are irreplaceable in many chemical reactions, including in the activity of large-scale enterprises in various spheres of production and everyday life. However, to counter their advantages, their high activity can lead to dangerous situations, and therefore the environment and humans have to be protected from such incidents. And specialists from the RFNC the All-Russia Research Institute of Experimental Physics and their colleagues from the Lobachevsky University of Nizhny Novgorod know how to do this.

The method proposed by the scientists unites the advantages of several traditional chemical approaches to air purification. It is the oxidation of toxic substances with ozone on the surface of porous ceramic materials that possess catalytic properties. As a result, state the authors of the development, the toxicants will become far less harmful or they will lose their toxic force completely. The guarantee of success lies not only in the catalysts, but also in special sorbents which the group of chemists, led by Academician of the RAES Professor Yuri Alexandrov, have been developing now for several years.


The problem is that the “ozonation” method, despite clear advantages over other means of purification, has still not received widespread application. The reason is the very same; the high toxicity of ozone. What is needed is extremely high production standards and strict control over all chemical processes that involve it – this is the strongest of oxidants. It is another matter if it proves successful to strictly dose it or, even better, to restrict it spatially. And this is what the chemists from Nizhny Novgorod have succeeded in achieving – with this sorbent, the foamed ceramic KhIPEK.

Strictly speaking, the scientists have not only devised and patented this material; they have also learnt how to produce it, although to date they have preferred not to disclose its composition. To date it is the other qualities of this foamed ceramic that have been applied; it is used as a thermal insulation and fireproof construction material. However, this is also an excellent sorbent, both for ozone and for chemical and biological compounds. And if the sorbent surface is treated with an ultra-thin, multi-layer polymer film that is able to capture biological substances, and if it is impregnated with a catalyst to ease the interaction between these substances, then the job, we can say, will be done. It will be sufficient to pass air through a filter in the form of a ceramic sponge with a pre-applied catalyst layer, and saturated with ozone and toxic substances will completely or to a significant extent will lose their toxicity! And neither the environment nor humankind will suffer from potentially or actually toxic substances.

The research is not yet complete. However, the group has accumulated enormous experience in deep oxidative degradation or, put simply, the breakdown of various organic, metalloorganic and biological compounds by a method of ozonolysis on solid surfaces. They are also able to turn the results of theoretic surveys into a practical application. The KhIPEK they have developed, presented at the Techno Pia 99 – Intex Osaka won the acknowledgement of the Japanese. Thus, there is no doubt of the ability of the scientists or the commercial potential of the project. We wish the authors success and financial support, and this is because we are all winners in this situation.

Andrew Vakhliaev | alfa
Further information:
http://tech-db.istc.ru/ISTC/sc.nsf/events/air-purification

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>