Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking a taxi could increase your exposure to pollution

11.01.2006


Researchers have discovered that your level of exposure to pollution can vary according to what method of transport you use, with travelling by taxis resulting in the highest levels of exposure and walking the least.



Research published in the journal Atmospheric Environment, describes how the team from Imperial College London and the Health and Safety Laboratory, Buxton, measured and visualised exposure to pollution levels, while using a variety of different transport methods for travelling across London.

The researchers looked at five modes of transport, including walking, cycling, car, taxi and bus, and measured levels of exposure to ultrafine particles when travelling on them using a newly developed system that uses in combination an ultrafine particle counter and video recorder.


Ultrafine particles are less than 100 nanometres in diameter and mainly traffic related. Their small size and large surface area means it is possible to inhale large quantities which makes them particularly dangerous.

The visualisation system allows video images of individuals’ activities to be played back alongside the ultrafine particle concentrations they are exposed to. As a result, most activities and behaviours that cause high exposures can be visibly identified, such as being trapped on traffic islands and waiting in congested traffic.

On average, while travelling in a taxi, passengers were exposed to over 100,000 ultrafine particles counts per cubic centimetre (pt/cm3), travelling in a bus resulted in exposure to just under 100,000 pt/cm3, travelling in car caused exposure to 40,000 pt/cm3, cycling was around 80,000 pt/cm3, and walking was just under 50,000 pt/cm3.

Surbjit Kaur, from Imperial College London, and first author of the paper, said: “It was a real surprise to find the extent to which walking resulted in the lowest exposure. The higher exposure from travelling in taxis may come from actually sitting in the vehicle while being stuck in traffic where you are directly in the path of the pollutant source. Also the fact that taxis are probably on the road for much longer than your average car could cause an accumulation of ultrafine particles.”

Dr Mark Nieuwenhuijsen, from Imperial College London, added: “The particular strength of the system is the visual aspect. The new monitoring and visualisation system is an effective environmental risk communication tool that can be used to identify, visualise and avoid hotspots of pollution. ”

The study was carried out as part of the DAPPLE (Dispersion of Air Pollution & Penetration into the Local Environment) project, which looks to provide a better understanding of the physical processes affecting street and neighbourhood scale flows of air, traffic and people, and their corresponding interactions with the dispersion of pollutants. The project consortium includes the University of Bristol, the University of Cambridge, Imperial College London, University of Leeds, University of Reading and the University of Surrey.

DAPPLE is funded by the Engineering and Physical Science Research Council. Further information about the project and exposure visualisation samples can be seen at www.dapple.org.uk.

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk
http://www.dapple.org.uk

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>