Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research to Help Guarantee Future of Oil Supplies

06.01.2006


Scientists at the University of Liverpool are working with leading oil companies to further understanding of the nature of oil and gas reservoirs within deeply buried submarine channels.



Professor Stephen Flint and Dr David Hodgson, from the Department of Earth and Ocean Sciences, have been awarded £1 million by a global consortium of 11 of the world’s leading oil companies to study how sand is transported through and deposited in deep-sea submarine channels. Scientists will study ancient channel systems in the Karoo area of South Africa, which are now exposed above sea level.

Submarine channels transport sediments such as sand, mud and silt from shallow marine waters to the deep sea and contain much of the recently discovered oil and gas reserves outside the Middle East. The cost of drilling a well to extract new reserves in slope channel reservoirs can cost over $50 million (£29 million) and so it is crucial that exactly the right position is targeted. Only sand filled channels can produce oil and so scientists at the University will work on predicting which channels contain sand and which are filled with mud and silt, based on analysis on the characteristics and setting of the Karoo systems.


Professor Flint said: “We will be using the latest laser imaging, satellite mapping, helicopter-based high resolution photography and 3-D computer modelling in our field work to capture the data required to understand and predict sand transfer and storage mechanisms.”

The computer models will be used by oil companies to guide development of new oilfields throughout the world, in order to dramatically increase the efficiency of oil recovery and help guarantee future energy supplies. The team will also use the data to improve understanding of the mechanisms of sand transfer from shallow shelf to deep ocean floor, in order to predict how submarine landslides and related natural hazards, such as tsunamis, occur.

Professor Flint added: “It is important that new and efficient ways of increasing recovery of oil reserves are found. Many factors can disrupt the supply of oil, such as increased costs, disputes, and natural disasters. Our research will help in providing accurate identification of areas of interest to oil companies, but it will also help us explain and better predict how sediment is distributed to the deep oceans.”

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>