Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mission to Mars via Antarctica

22.12.2005


A few weeks before leaving for the Antarctic Concordia Station, the Italian-French crew that will spend over one year in one of the harshest, isolated environments on Earth, attended two days of preparatory training at ESA’s Headquarters in Paris, France. During their stay at the research station the crew will participate in a number of ESA experiments – the outcome of which will help prepare for long-term missions to Mars.



As part of the Aurora Exploration Programme, ESA is considering participating in a human mission to Mars by the year 2030. Research projects are planned or are already underway to develop the technology and knowledge needed. By being involved in programmes that have requirements similar to those of a mission to Mars, ESA will gain experience on how best to prepare for such a challenging mission.

"The Concordia Station is an ideal location as it replicates certain aspects of a Mars mission," explains Oliver Angerer, ESA’s coordinator for the Concordia research programme. "The crew lives in an extreme environment in one of the most remote places on Earth. During the winter the base is completely cut off with no visitors and no chance for rescue. In such an isolated location, the crew has to learn to be fully self-sufficient."


Cooperation

Built and operated jointly by the French Polar Institute (Institute Paul Emile Victor, IPEV) and the Italian Antarctic Programme (Consorzio per l’attuazione del Programma Nazionale di Richerche in Antartide, PNRA S.C.r.l.), the Concordia Station was completed in 2004. A letter of intent was signed with IPEV and PNRA in 2002 that enabled ESA to cooperate on some aspects of the project.

Capable of providing home to up to 16 crewmembers in the winter, the station consists of three buildings, which are interlinked by enclosed walkways. Two large cylindrical three-storey buildings provide the station’s main living and working quarters, whilst the third building houses technical equipment, like the electrical power plant and boiler room.

Last November, the first crew finished their winter-over which was dedicated to the technical qualification of the station . The summer season sees a swelling in the number of inhabitants as short-stay scientists take advantage of the less extreme weather (however, mean air temperature is about -30°C during this time!). With the second crew now starting to gather at the remote research station, the summer season also marks a change over of the crew.

Briefings

Three scientists who are part of the next Concordia winter-over crew have already made the long journey to Antarctica. The rest of the crew, who will leave for the Antarctic research station during December, gathered at ESA’s Headquarters in Paris for two days of pre-departure training. They received briefings about life at Concordia, including aspects such as safety and the implications of the Antarctic Treaty for activities at the station.

The seven crewmembers also heard about research at the station, including two special experiments for which they will act as subjects during their stay. In 2003, ESA coordinated together with the Concordia partners a Research Announcement for medical and psychological research, from which six proposals were selected.

The two experiments, which are the first to be implemented in the coming season, look at psychological adaptation to the environment and the process of developing group identity; issues that will also be important factors for humans travelling to Mars. For this research the crew will complete questionnaires at regular intervals throughout their stay.

ESA’s Mistacoba experiment, which already started a year ago when the first crew started living at the station, will also continue after the crew rotation. Starting from a newly built clean environment, samples are taken from fixed locations in the base as well as from crewmembers themselves. The Mistacoba experiment will provide a profile of how microbes spread and evolve in the station - an isolated and confined environment - over time.

Water-recycling

To protect the Antarctic environment, all waste materials must be removed from the Continent. For the Concordia Station, this means that all waste materials have to be appropriately treated. Regarding water, based on ESA life support technologies, ESA developed, together with PNRA and IPEV, a system to recycle the so-called ’grey water’ collected from showers, laundry and dishwashing, which has been operating for a year in line with the requirements of the Concordia partners.

Other ESA activities for Concordia include the ongoing development of a system to monitor the health and well being of the crew, part of the Long Term Medical Survey (LMTS). Physiological parameters, collected using a vest-like item of clothing, will provide valuable data about the health and fitness of crew during long-term stays in harsh environments.

Real environment

In mid-February the last plane of summer visitors will depart from Concordia leaving the crew to their own devices. "For those nine winter months the crew will experience extreme isolation," adds Oliver Angerer. "Concordia is a real operational environment, something we would never be able to simulate in a laboratory. This will enhance and complement our research and give us valuable insight we need to prepare for Mars."

Dieter Isakeit | alfa
Further information:
http://www.esa.int/esaHS/SEMBZA8A9HE_research_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>