Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squeezing out dune plants

26.09.2005


"Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats"



Researchers from Texas A&M University created a model to better understand the impacts of development and coastal erosion on plant communities, including plants that grow in the ever-shrinking strip of habitat between land and the ocean. Rusty Feagin, Douglas Sherman, and William Grant simulated varying levels of sea-level rise to understand the effects of erosion and development on sand dune plants. Their research appears in the September issue of Frontiers in Ecology and the Environment.

In most circumstances, as coastlines erode, plant communities are displaced away from the ocean, unless blocked by a barrier, such as a cliff. In areas like Galveston Island, natural cliffs are not the issue, but development and non-native lawns block the plants’ migration.


Creating models to explore low, medium, and high increases in sea levels for Galveston Island, Feagin and colleagues found that the combination of human-created barriers and sea level rise trapped plants in a small zone, altering the plant population as well as the dune structure.

Larger, sturdier plants – late-succession species – are the most important to preserve, yet these are the most likely species to be lost. These plants are critical in the formation of dunes, binding sediments, and reducing erosion, both in the long term and during events such as hurricanes. They also provide critical habitat for endangered animals such as the Kemp’s ridley sea turtle (Lepidochelys kempii).

According to the scientists, in a low sea-rise scenario, plant communities fully developed over five years, but in cases of moderate and high sea level rise, plant communities were too stressed to grow in many areas, leading to smaller dunes and an eventual breakdown of dune formation. In the higher water scenarios, the plant populations no longer provided windblocks, elevated dune structures, or added to the sand and soil fertility.

On Galveston Island, "the loss of such species is already occurring, where sea oats (Uniola paniculata) have disappeared due to a combination of human-induced disturbance and climate change," say the researchers.

All this means faster erosion and less protection for the people, animals, and buildings on Galveston Island.

Annie Drinkard | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>