Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New climate modelling computer provides more reliable risk analyses

24.08.2005


Enhanced computing capability will make it possible to gain new insights on climate change. On Tuesday, August 23, the climate modelling computer Tornado was inaugurated by Lena Sommestad, who is Environment Minister in Sweden.



Current research reports on climatic evolution unanimously concur that global temperature and precipitation are in a state of change. The extent global warming will reach in the future depends largely on the quantity of future carbon dioxide emission, but scientists need to explore several other uncertainty factors. For instance, what regions can be expected to be bear the brunt of climatic change, and just how commonplace will devastating storms, rain torrents and extreme heat waves be in the future.

A powerful new computer is now available for highly detailed climate studies by Swedish research teams at Rossby Centre (a unit of the Swedish Meteorological and Hydrological Institute, SMHI) and the Department of Meteorology at Stockholm University. This climate modelling computer, designed and hosted by the National Supercomputer Centre at Linköping University, is dedicated to the development of climate scenarios and the assessment of how climate change might influence regional conditions. Especially the Arctic climate and the Baltic Sea will be focal points for study.


Environment Minister Lena Sommestad officially launched the climate modelling computer Tornado on Tuesday August 23 at Linköping University. She stressed the significance of access to upgraded computing power. “Concurrent with our task to reduce greenhouse gases, we must seek knowledge about the effects of climate change, on both global and local levels. This supercomputer can provide us with much needed material for political decision-making.”

A key speaker at the inauguration ceremony was Professor Emeritus Bert Bolin who previously served at Stockholm University. He pointed out, “This expansion of our computing resources will enable Swedish scientists to participate more dynamically in the ongoing European collaboration that is investigating climatic variability. The most significant result of this tool will be more reliable risk analyses of anticipated climatic development.”

Director-General Maria Ågren at the Swedish Meteorological and Hydrological Institute emphasized the importance of upgraded computer capacity. “This enhanced computing capability is a giant step forward. Tornado will not only enable more calculations to be made at the same time, but these will be more detailed and cover a greater geographical area. Moreover, we will be better able to understand climate development in now unpredictable areas.

Tornado is funded by the Knut and Alice Wallenberg Foundation, a Swedish research and educational endowment fund.

Tornado will make previous climate computer resources available. These will continue to be used to develop numerical models and regional scenarios for the scientific community of Scandinavia and the rest of Europe.

Åke Hjelm | alfa
Further information:
http://www.smhi.se/en/index.htm

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>