Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bat-bot boosts sonar research

22.08.2005


A robotic bat head that can emit and detect ultrasound in the band of frequencies used by the world’s bats will give echolocation research a huge boost.



The Bat-Bot, developed by IST project CIRCE, can also wriggle its ears, a technique often used by bats to modulate the characteristics of the echo.

CIRCE developed the Bat-Bot to closely mimic the amazing echolocation skills of bats and to act as a tool for further research in echolocation.


"Sonar in water is a mature field, but sonar in air is far less advanced," says Dr Herbert Peremans, who is head of the Active Perception Lab the University of Antwerp and CIRCE coordinator.

"Whenever a robot team wants to build an autonomous robot they look at sonar first, but they quickly run into problems due to the simple nature of commercial sonar systems, and switch to vision or laser-ranging. We hope that the research we can now do with the robotic bat will lead to more sophisticated sonar systems being used for robot navigation and other applications," he says.

One of those potential applications could be identifying plants using echolocation. During development of the Bat-Bot CIRCE research validated that different plants give off unique echo signatures.

"We tested several plant species and they could all be reliably identified by echolocation, proving that in principle the technique could work for plant identification. But further research into the technique is needed," says Peremans.

While building the robotic head was the primary aim of CIRCE, the group generated many useful results along the way. One project partner developed a broadband transducer that could both convert acoustical energy to electrical energy and electrical to acoustical across the 20 to 200 kHz spectrum.

"There are about 700 echolocating bat species, and they use a wide range of frequencies. We needed a single device that could handle that entire range. The transducer developed by one of the partners can do that and has some additional advantages making it a promising technology for further commercialisation," he says.

The project also completed CT scans on about 20 bat species, demonstrating that the ear shape of bats varies enormously, and heavily influences their performance. This knowledge could also be used to enhance the performance of existing sonar systems.

"We’re the first to build a high resolution computer model of bat ears, which act as antennae. It’s a result we’re very proud of and so we’ve manufactured a series of simplified nylon ears (rapid prototyping tool) which we can now begin to characterise by investigating how their shape influences their sound reception," says Peremans.

The Bat-Bot will now feature in a number of new research projects, such as the EU project CILIA, due to start in September, which will examine how sets of tiny hairs on insects, fish and in the cochlea of mammals like bats and humans can be used to extract information on the organism’s environment.

"We’re interested in further exploring active sonar sensing with the device, and we hope that other researchers and teams will get in touch with us to collaborate on new projects," says Peremans.

It’s impossible to guess at what potential results the Bat-Bot might generate, but CIRCE’s work with plants and bat ear design demonstrate that sonar in air has potentially many applications, not least in the development of functional sonar navigation for robots.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>