Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Metal of Dishonor" - munitions from depleted Uranium (DU) contaminates soils in crisis areas

11.08.2005


They are called "hellfire", "smart bombs", "advanced penetrators" or "bunker-busters". They all have the component of depleted Uranium (DU) in common. DU remains after the fissile isotope 235U has been extracted from natural Uranium for the production of nuclear fuel or nuclear weapons. However 235U only comes to 5% of the total Uranium content, so that DU consists of the isotope 238U almost entirely. Between DU and natural Uranium there are no chemical and toxicological differences, merely the radioactivity is approximately 40 % less. DU is a waste product of the nuclear industry, for which there is no further use. Worldwide over 1.1 million tons of DU lie on dumpsites, a minimum of 46 thousand tons are added to this every year. The frontrunners of the DU production are the US and Russia, Great Britain and China are ranking after them by a wide margin.

The military has become a grateful purchaser of DU because DU has special advantages for the production of missiles (picture 1) compared with conventional materials. With a specific weight of 19 kg/L DU is 70 % more heavy than lead, almost as heavy as gold or wolfram, but simply incomparably cheaper than those. The heavy missiles go through armour plating of vehicles and buildings better than any other material. Furthermore DU is "pyrophor" i.e. it burns when mechanically stressed and therefore increases the destructive effect of the munitions. In wars of the past 14 years (Iraq, Kuwait, Bosnia, Kosovo, Serbia, Montenegro, Afghanistan) approximately 1.4 million DU missiles were used up, according to a mass of 400,000 kg DU.

Besides the US France, Great Britain, Israel, Pakistan, Russia, Saudi Arabia, Thailand and Turkey possess or develop DU munitions. The UNEP (United Nations Environmental Program in Nairobi) depicts the typical attack of an A10 bomber on an aim on the ground as "a burst of fire of approximately 2 seconds, during which approximately 200 projectiles in straight line in a distance of 1-3 metres cover an area of approximately 500 m2". However hardly more than 10 of these 200 missiles hit their aims the rest disappears in the soil. UNEP assumes 30.000 DU-projectiles used up in Kosovo. However the search expedition of the "Balkan Task Force" sent by UNEP in November 2000 only found seven and a half projectiles. Herein lies a problem: Up to now one has been concerned toxicologically and ecologically only with DU of the few hit-missiles, burning to Uranium oxide dust during the impact, which pollutes the air or contaminates objects. The DU’s destiny from the far larger number of missiles, which get into the soil without hitting any aim, is unknown to a great extent. Besides its dangerousness as a radionuclide Uranium is a toxic heavy metal, which mainly accumulates in bones and causes several diseases, ranging from functional disturbances of the kidneys, the lungs and the liver to cancer and has mutagenic properties. Uranium pollution is connected especially with the so-called "Gulf-war" syndrome among soldiers who saw action in these areas; a fact which DU brings in the name "Metal of Dishonor" among veterans. In extensive tests scientists of the Institute of Plant Nutrition and Soil Science of the Federal Agricultural Research Center in Braunschweig, Germany have been investigating factors for five years, which are responsible for the dissolution of Uranium and its oxides in the soil (foto right). The Uranium concentrations put in the soil correspond to the pollution of a "standard attack" with DU munitions as descrobed by UNEP. The results showed that Uranium, applied to the soil as Uranium oxide, is dissolved and can be absorbed by plants by physicochemical and biological processes. After three years up to 40% of the supplied Uranium was converted into mobile species. Such mobile Uranium species can either be absorbed by plants or leached from the soil to water bodies. In the tests of FAL the Uranium contents supplied by the plants directly depended on the Uranium concentrations in the soils. In respect to the total Uranium content of the soil 0.4 - 0.6 %, or in respect to the available Uranium share 5-6 % went over to above ground of plants from the soil. The Uranium concentrations of the plants were thousand times higher up even in the lowest levels of contamination. Furthermore the scientists found out that the mobilisation of Uranium grows with a decreasing fertility of the soil (minor pH value, less content of mineral plant nutrients, especially phosphorus). But soils with low levels of fertility are typical for crisis areas and the population has to rely on self-sufficiency on the own soil. Both of them are aspects, which increase the tragic of the consequences of the DU-munitions severely, just a "metal of dishonor".



More information are available at the website of the workshop "Uran-Umwelt-Unbehagen" held at FAL on November 25, 2004; see in "workshops" at: http://www.pb.fal.de/index.htm?page=/home.htm

Or contact: Prof. Dr. Dr. Ewald Schnug, Bundesforschungsanstalt für Landwirtschaft (FAL), Institut für Pflanzenernährung und Bodenkunde, Bundesallee 50, 38116 Braunschweig, E-mail: pb@fal.de

Margit Fink | idw
Further information:
http://www.pb.fal.de/index.htm?page=/home.htm

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>