Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amazon source of 5-year-old river breath

28.07.2005


The rivers of South America’s Amazon basin are "breathing" far harder – cycling the greenhouse gas carbon dioxide more quickly – than anyone realized.



Most of the carbon being exhaled – or outgassed – as carbon dioxide from Amazonian rivers and wetlands has spent a mere 5 years sequestered in the trees, other plants and soils of the surrounding landscape, U.S. and Brazilian researchers report in the July 28 issue of Nature.

It had been hoped that regions such as the nearly 2.4 million-square-mile Amazon River basin – where tropical forests rapidly gulp carbon dioxide during photosynthesis – were holding onto that carbon for decades, even centuries, says Emilio Mayorga, University of Washington oceanographer and lead author of the Nature piece with Anthony Aufdenkampe of the Stroud Water Research Center in Pennsylvania.


As policy makers turn increasingly to carbon-credit trading as a means of grappling with the impacts of human-induced climate change, knowing how much carbon can be stored – and where and for how long – is critical, the authors say.

"Our results were surprising because those who’ve previously made measurements found carbon in the rivers that came from the surrounding forests to be 40 to more than 1,000 years old," Aufdenkampe says. "They assumed that the return of this forest carbon to the atmosphere must be a slow process that offered at least temporary respite from greenhouse effects.

"As part of the largest radiocarbon age survey ever for a single watershed, we show that the enormous amount of carbon dioxide silently being returned to the atmosphere is far younger than carbon being carried downstream," he said. "Previous studies failed to detect the rapid recycling of forest carbon because they never dated the invisible greenhouse gas as it is literally exhaled by the river organisms."

"River breath is much deeper and faster than anyone realized," says Jeff Richey, UW oceanographer and another co-author.

Carbon is carried by rains and groundwater into waterways from soils, decomposing woody debris, leaf litter and other organic matter. Once in waterways it is chewed up by microorganisms, insects and fish. The carbon dioxide they generate quickly returns to the atmosphere, some 500 million tons a year, an amount equal to what is absorbed each year by the Amazonian rainforest.

"Having established that the amount of carbon outgassing is much greater than anyone imagined, the issue then becomes, where does it come from," Mayorga says. "If it’s young, that indicates the carbon pool is dynamic, which could make the system much more reactive to deforestation and climate change."

For example, data from a region of active deforestation in the southern Amazon already shows that the carbon leaving rivers has an identifiable isotopic signature of pasture grasses.

"You’re changing the land use, changing vegetation and other conditions. In terms of what’s being respired, the system is responding fairly quickly," Mayorga says. "Human and natural systems, in turn, will be impacted."

No previous tropical study has used both radioactive carbon-14 and stable carbon-13 isotopes to address these questions. Funding from the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory made the analysis by Mayorga and Aufdenkampe possible. The samples were collected by Richey’s research group and Brazilian scientists on expeditions going back as far as 1991 that were funded by the National Science Foundation, National Aeronautics and Space Administration and the Research Support Foundation for the State of San Paulo (FAPESP), Brazil.

Other co-authors are Paul Quay and the late John Hedges, both UW oceanographers; Caroline Masiello of Rice University; Alex Krusche of the University of São Paulo, Brazil; and Thomas Brown of the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>