Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral reef fish larvae settle close to home

26.07.2005


Tracing the larvae of marine organisms from where they were born to their ultimate destination has been regarded as one of the greatest challenges in ocean science. Managers of marine reserves areas have eagerly sought this information to help determine the optimal size and spacing of marine reserves; well-planned reserves should help ensure that protected populations can sustain themselves as well as provide a source of larvae to maintain exploited populations in areas open to fishing. In a new study, researchers have managed to uncover the patterns of local dispersion for a small coral reef fish species by employing a combination of inventive tracking techniques. In addition to providing ecological information about one particular fish species, the work suggests ways that the ecology of other fish can be studied and applied to strategies for the maintenance of stable populations.



Most marine fishes start their lives as tiny larvae, smaller than a millimeter, and any thought of tagging them to track their movements was once considered impossible. However, researchers Geoff Jones from James Cook University (Australia), Serge Planes from the University of Perpignan (France), and Simon Thorrold from Woods Hole Oceanographic Institute have overcome this problem with a novel application of DNA paternity analysis, in combination with a means of marking larvae with the antibiotic tetracycline. They show that for the panda clownfish (Amphiprion polymnus), a significant proportion of larvae ultimately move less than a few hundred meters away from their parents. In fact, the researchers found that one third of juveniles settled within a so-called "natal area" covering just two hectares (less than five acres). Although the other two-thirds of the fish have yet to be traced, they appear to have travelled in excess of 10 km (6.2 mi) away from their birth site. The study also shows that although no individuals returned to their parents, a few made their home less than 50 meters away. (Hence, the authors point out, Nemo the clownfish may not have been living with his dad, but he might have settled just down the street.)

Although clownfish spend a relatively short period of time as larvae (approximately 10 days), the results are significant because they document the smallest scale of dispersal known for a marine fish species. Clownfish are subject to a thriving aquarium-fish trade in many tropical countries, and their numbers have been seriously depleted. This study provides real hope that marine reserves can provide the right balance between conserving such species and exploiting them in a sustainable manner.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>