Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rolling the dice on species extinction?

01.07.2005


Climate change and species extinction, two phrases that seem to be on everyone’s mind. But opinions diverge and even if the majority of us can no longer deny climate change – as the signing of the Kyoto agreement by most countries shows – its real dimension and impact on species extinction is still very controversial. But now scientists from Oxford University’s Biodiversity Research Group and colleagues decided to test our capacity to see the future by…going back to the past. And the conclusion is that the most commonly used models to predict species extinction are basically not that good. But not all is bad news.



Where are we going to be in 100 years’ time? The scientific results that reach the public vary so much that we can no longer know what to believe and many times it’s simply our political choices that define our ecological opinion. We are not challenging scientists’ integrity, but how accurate are their forecasting models? The problem is that we cannot go to the future to test their predictions.

But now Miguel B. Araújo, Robert J. Whittaker, Richard J. Ladle and Markus Erhard from the Oxford University’s Biodiversity Research Group, the London’s Natural History Museum Biodiversity Research Group and the Institute for Meteorology and Climate Research in Germany, in a paper just published online in the journal of Global Ecology and Biogeography might have found a solution by approaching the problem in a very different way.


In fact, the team of scientists decided that instead of trying to predict the future why not test the models by going back to the past instead? By using available and very complete population and distribution data on one hundred and sixty one 161 species of British birds during two distinct time periods (period 1 or T1= 1967-1972 and period 2 or T2= 1987-1991), Araújo and colleagues were able to test the accuracy of sixteen of the most widely used models of species evolution. They used the different models to predict what would happen to the British birds’ species from T1 to T2 by using the available species data on T1 together with known climate variation of those twenty years. Subsequently, the results obtained by the different models were compared with the real figures observed in T2. The approach is ingeniously simple but, nevertheless, very informative.

The models tested are climate envelope models. Each species can only survive on a range of particular climates (what is called the species’ climate envelope). The models use this information to predict whether a species will have a tendency to grow or disappear as consequence of a particular climate change.

But when Araújo and colleagues tested the most widely used climate envelope models to predict what would happen to British birds from T1 to T2 , to their surprise, the predicted numbers were totally different from what has happened in reality.

In fact, for 90% of the species tested, the models could not even agree if the species were going to expand or shrink under the given climate scenario. For the remaining 10% of the species, where all the models managed to agree whether the species would shrink or expand, only in half of the predictions the direction was correct. This means that in 5% of the species tested all the sixteen models came to the wrong conclusion by predicting that a species would expand when in fact it shrank, or vice versa.

As one of co-authors, Richard Ladle, says, “It would be just as accurate and a lot less hassle just to toss a coin”.

But not everything is dark; Araújo and colleagues might have found an alternative solution by using what is called a “consensus model”. A consensus model is a mathematical model, which, in this case, finds a projection that reflects the central tendency found by the different climate envelope models used. In fact, Araújo and colleagues show that if the alternative models are used to find a consensus projection, the predictions obtained could become as much as 75% accurate.

But since the consensus projection depends, nevertheless, of other projections what is clear is that scientists need to improve their models’ accuracy in order to have the capacity to predict something that actually resembles reality.

As Richard Ladle says “If we don’t improve our forecasting soon then not only will the climate sceptics find it easy to criticize climate change research, but we will be left making decisions about the future of the planet based on guesswork”.

Catarina Amorim | alfa
Further information:
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1466-822X.2005.00182.x

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>