Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First test of predictions of climate change impacts on biodiversity

14.06.2005


Reliance on just one model no better than flipping a coin!



A new study published in the journal Global Ecology and Biogeography represents the first real test of the performance of models used to forecast how species will change their geographic ranges in response to the Earth’s changing climate

Despite the weight of scientific evidence that the Earth is warming and that this is already affecting wildlife, many people - and a few scientists - still refuse to believe it is actually happening. These climate change skeptics usually justify their position by insisting that scientists’ forecasts are just too inaccurate. Of course, we can never really know what the future will bring, but in a fascinating new study published this week in the journal Global Ecology and Biogeography a group of Oxford Scientists have tested the ability of environmental science to predict the future… by going back to the past.


Dr Miguel Araújo and his colleagues from Oxford University’s Biodiversity Research Group imagined they were back in the 70’s and were trying to predict the geographic ranges of British birds in 1991 using 16 commonly used climate-envelope models and the real data on how the climate had changed during this period.

Climate envelope model forecasts typically involve a three-step process: First, for each species, mathematical models are developed to link the species to its present climate envelope (actual environmental conditions where the species is found). Second, a climate change scenario for some point in the future, typically 2020 or 2050, is applied to generate a new potential range distribution for the species. Third, this new projected distribution is compared to the present distribution, allowing the scientists to forecast whether the species distribution, will grow, or shrink, or even become extinct.

Unlike previous studies that have provided untestable forecasts of range changes in response to future climate change, the Oxford study was able to directly compare the predicted range changes with what actually occurred. Surprisingly, the ability of any single model to accurately predict the 1991 distribution was very poor. The results of models applied to particular species were spectacularly variable. For 90% of species the models could not agree whether their geographic range would expand or contract. In the small minority of cases (10%) where all the models agreed about the direction of change, they only had a 50% chance of getting that direction right. “It would be just as accurate and a lot less hassle just to toss a coin” says one of the co-authors, Dr Richard Ladle.

So, will we ever be able to predict accurately how climate change will affect the distributions of animals and plants? The Oxford Group may have found a solution. “The accuracy of the predictions can be drastically increased if a set of alternative models are compared and used together to create a ‘consensus’ projection” Says Dr Araújo. Using the same data set for British birds, the consensus prediction was shown to be vastly superior to any single model and could predict bird range expansion or contraction with an accuracy of over 75%.

To avoid further accusations of crystal ball gazing, environmentalists and scientists now need to find further ways of improving the accuracy of models to provide more meaningful inputs into environmental policy making. “If we don’t improve our forecasting soon then not only will the climate skeptics find it easy to criticize climate change research, but we will be left making decisions about the future of the planet based on guesswork” says Dr Ladle.

Emily Davis | alfa
Further information:
http://www.blackwellpublishing.com

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>