Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Sculpt Streams to Create Desirable Environmental Outcomes

29.04.2005


Ecological engineering professor Marty Matlock has given his students an unusual assignment: He wants them to re-design a river.



This project requires research that co-leaders Matlock and Mike Hanley of the Nature Conservancy believe can be applied to other stream ecosystems nationwide.

“It’s about taking these ecosystems and trying to restore them to meet human needs and desires,” Matlock said. These desires include having clean water, preserving animal habitat, restoring wetlands, and creating spaces for natural beauty and recreation.


Restoring a stream is a complex process involving expertise in geology, ecology, hydraulics, hydrology and chemistry. Fluvial mechanics, or the study of water flow energy, also is crucial to understanding and designing these complex systems.
By studying the historic and current patterns of water flow and asking questions about desirable outcomes, Matlock and his students can re-design a stream to meet human needs in a sustainable fashion. Those needs will vary with each stream. “There’s no one right answer,” Matlock said “A stream can be a thousand things and still be a stream.”

The students in this graduate-level class are working with a landowner along a mile-long stretch of Wharton Creek, a tributary of War Eagle Creek. They have spent Saturdays in and around the creek, taking measurements, determining the dimensions of the stream and the size of the particles in the stream bed. By examining the bedrock and sediment, the erosion and flood plains, they will be able to create a history of what the channel has done.

“We’ve changed the way waters flow over the land,” Matlock said. Streams always have changed within certain boundaries – floods, droughts and other natural processes have shaped those boundaries for millions of years. However, humans have stretched those boundaries past their natural limits with logging, planting non-native crops, grazing, urbanization and other land-use changes. And these changes sometimes have brought about undesirable effects.

Impacted streams have more erosion power, causing land loss; many important species, such as smallmouth bass, have disappeared from native habitats; and more frequent flooding has led to more sediment movement, which adds more fine sediments to the human water supply. On Wharton Creek, for instance, clearing land and mining gravel from sand bars and riffles have changed the water’s flow. The channel has deepened and floods have become more powerful, causing land loss and sweeping sediment downstream towards the lake, carrying excess fertilizer from fields with it. “Humans depend upon water systems to be static. But we do things that make them more dynamic,” Matlock said.

Once the students have determined the past and present dynamics of the stream ecosystem, they will begin designing the restoration process based on the desired outcome for the stream. “You have to answer the question, what do you want the system to do?” Matlock said. “You can never restore streams to what they once were. But some of the things that were, we want back.”

In the case of Wharton Creek, the desired outcome may include restoration of smallmouth bass habitat, minimizing land loss and keeping sediment and gravel from being swept downstream. To do this will require many detailed steps, including restoring sinuosity to the stream, creating riffles and pools, planting native trees and grasses along the river banks and restoring the channel to its natural energy level.

In the course of working to restore streams, Matlock, Hanley and the students work with many people in the community, including the director of environmental compliance for the Beaver Lake Water District, the local director of the Northwest Arkansas Chapter of the Audubon Society, the Arkansas Soil and Water Conservation Commission, the Arkansas Game and Fish Commission, and county and city governments. Indeed, the Nature Conservancy’s Hanley drives up from Mississippi each Thursday to co-teach the class, because he believes it is such an important way to develop the skills of future ecological engineers who will in turn make a difference in communities nationwide.

“If we’re going to live on the landscape in a way that allows future generations to continue to use it, we need to have this kind of community engagement,” Matlock said.

| newswise
Further information:
http://www.uark.edu

More articles from Ecology, The Environment and Conservation:

nachricht Robotic fish to replace animal testing
17.06.2019 | Otto-von-Guericke-Universität Magdeburg

nachricht Marine oil snow
12.06.2019 | University of Delaware

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>