Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Dead zone’ area in Gulf could be increasing, researchers say

27.04.2005


The "dead zone" area of the Gulf of Mexico – a region that annually suffers from low oxygen which can result in huge marine life losses – has appeared much earlier this year, meaning it could be potentially larger in 2005 and affect marine life more adversely than normal, researchers are reporting.



A team of scientists from Texas A&M University, Texas A&M at Galveston, Louisiana State University and NASA recently surveyed the dead zone in the northern Gulf of Mexico and their findings show that the area’s water contains lower oxygen levels than expected this time of year.

That could mean the dead zone area could be more severe in 2005 and perhaps cover an even larger area than in previous years, says Steve DiMarco, associate professor in the Department of Oceanography at Texas A&M and leader of the project. "During January and February of this year, the flow of the Mississippi River was larger than at any time in 2004," DiMarco explains. "That means the stratification levels between the fresh river water and heavier salt water could results in increased hypoxia, which creates the dead zone."


Hypoxia is a term for extremely low levels of oxygen concentrations in water. Hypoxia can result in fish kills and can severely impact other forms of marine life where it is present.

The dead zone area covers about 6,000 square miles in the Gulf.

The dead zone is located along the Louisiana coast where the Mississippi and Atchafalaya Rivers empty into the gulf. The dead zone area typically develops in late spring and early summer following the spring flood stage of the rivers, which bring large amounts of nutrients – often in the form of fertilizer – into the Gulf of Mexico.

The Mississippi is the largest river in the United States, draining 40 percent of the land area of the country. It also accounts for almost 90 percent of the freshwater runoff into the Gulf of Mexico. "We saw no hypoxia in this area until June of last year, and this year we found in late March," DiMarco says. "If the physical conditions we noticed continue, it could mean an unusually strong hypoxic zone this year, and that’s not good news."

DiMarco said the team studied an area between Southwest Pass, La., and the Calcasieu ship channel. They were on the Gyre, a research vessel owned by Texas A&M, and the project is funded by NOAA (National Oceanic and Atmospheric Administration.).

DiMarco said the most intense hypoxia levels are usually between 30 to 60 feet below the surface. Fish in this area can be "stressed," meaning they can die or, at the very least, move to other areas, which adversely affects fishermen in the dead zone region. "Bottom-dwelling marine life, where some of the most intense hypoxia levels are, can easily die," he says. "This area is of immense importance to people along the northern Gulf of Mexico," he adds. "We plan to return there in May, July, August and October to collect more data and see what condition the dead zone area is at that time."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>