Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite images give a better picture of sediment transport

05.04.2005


Erosion and human activities are inducing large amounts of terrigenous sediment input to the southwest lagoon of New Caledonia. Such deposits can pose a threat to the lagoon’s ecological balance and biological richness. Scientists from the IRD’s Noumea centre have for several years been applying modelling techniques in order to unravel the system of current circulation and sediment transport (1). Satellite remote sensing provides reliable quantified data on the concentration of suspended matter in water. The researchers compared the data transmitted by the Landsat satellite with figures from in situ measurements made in the lagoon. The results show the possibility of making a detailed map of the water turbidity using optical remote sensing, with uncertainty rate less than 20%. The satellite images therefore provide key data for calibration, refining and validation of the numerical sediment-transport models elaborated. This dual approach furthermore arrives at a spatial distribution of the potential for sea-floor sediments to return into suspension. This advance opens up new prospects for research.



The lagoon which surrounds New Caledonia is known for its high biodiversity and for the fragility of its coral reefs. What effects do human activities, stemming mainly from urbanization and the mining industry, coupled with sediment input from rivers resulting from natural soil erosion, have on the lagoon ecosystems ? Scientists from the Camélia Unit of IRD’s centre at Noumea took on this question. Their work is focused mainly on the southwest lagoon, off the capital Noumea, where half the country’s population live. Investigations involve several aspects, including notably the accumulation of metals in marine organisms, currents responsible for dispersing materials brought by the rivers, and also quality analysis on the sea water (dissolved elements, suspensions). Turbidity is a factor that limits the development of corals because it reduces light penetration into the water. Moreover, the fine suspended particles carry in metals that can pollute aquatic ecosystems.

In research on particular environments, numerical models can give an accurate picture of events and situations on a range of scales and offer predictions of their impact. The effectiveness of modelling requires validation of the method’s results, by means of comparison against sets of data determined in situ. It is also possible to compare, at the ocean surface, digital simulations with satellite images. Combination of these data and in-situ measurements with model-derived information results in a three-dimensional picture and description of the processes under investigation.


Such a procedure was adopted to study the sediment transport regime operating in the southwest lagoon of New Caledonia. The physics of sediment transport calls for hydrodynamics methods. Researchers use a numerical model that reproduces the currents and material transport that occur, taking into account the constraints exerted by the wind field and tidal effects (1). The model can determine the erosion fluxes and pinpoint the areas of particle deposition. Validation and refinement of the models are achieved by means of in situ measurement of turbidity, and of sediments, in order to determine in particular the degree of heterogeneity of the sea floor characteristics: white or grey sand, with or without marine plant cover, sandy-clay and silty floor, presence of a river mouth, and so on. As New Caledonia’s lagoon covers an area of about 2000 km2, calibration of a numerical model solely on the basis of in situ measurements would be a difficult and complex operation.

The scientists of IRD’s Camélia Research Unit recently showed that satellite images could help considerably in modelling sediment transport. Effectively, the water turbidity results from the presence of fine suspended particles, therefore variations in the type and concentration of these particles alter the optical properties of marine waters. Remote sensing, which shows up colour variations of sea water, can therefore be used to draw up a map of this turbidity. This map, put together using images transmitted by the Landsat satellite, was studied alongside quantified data derived from in situ measurements, and against figures gleaned from the numerical model. Estimation of concentrations of suspended matter by remote sensing proved to be reliable, with a low average uncertainty rate of 17.5 %. However, satellite images are accessible only in clear weather without strong wind (i.e. at < 10 m/s wind speed or < 20 knots), which would generate too much foam and make it difficult to determine the optical properties of the waters. Remote sensing is nevertheless a powerful tool, which when coupled with numerical models provides a means of indirectly determining the spatial distribution of the erosion rate over the whole of the southwest lagoon. The data provided thus help to refine and validate the numerical models, the only type capable of rendering three-dimensional information on the dynamics and movement of sedimentary particles with temporal predictions.

Furthermore, the combined use of remote sensing and numerical models opens up new prospects for research. Seeing that it is possible to plot the spatial distribution of the sea-floor erosion rate, future research will attempt to analyse this parameter taking into consideration the origin of the sediment particles that have been put back into suspension. These can be the result of soil erosion (terrigenous origin) and subsequent transport by rivers. In this case, they are more easily put back into suspension in the lagoon. Other sedimentary particles can come from the activities of marine organisms (biogenic origin). These muds of marine origin, more compact, are more difficult to put into suspension. Accurate indications of the sedimentary particles’ biogenic or terrigenous nature should therefore lead to improve further the precision of predictions provided by the models.

(1) see the Scientific news sheet n°179 of July 2003, “New Caledonia lagoon: sediment transport tracking and prediction”, which can be viewed on: http://www.ird.fr/fr/actualites/fiches/2003/fiche179.htm

Mina Vilayleck – DIC

Translation : Nicholas Flay

Hélène Deval | EurekAlert!
Further information:
http://www.ird.fr

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>