Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An invisible threat could change Britain’s landscapes

14.02.2005


People and farm animals are helping an invisible pollutant to change the types of plants that grow in Britain, particularly in remote and rural regions such as the Lake District.



Nitrogen deposits are the cause of the problem. The dung from farm animals produces vast quantities of ammonia. Since the industrial revolution, burning fuels (coal, gas, petrol) has lead to massive emissions of nitrogen oxides into the atmosphere. These practices lead to ammonia and nitrates being deposited back onto the land, acting as fertilisers and acidifying soils.

Scientists working on the NERC-funded GANE (Global Atmospheric Nitrogen Enrichment) research initiative will be presenting the results of their investigations into this unseen and largely unnoticed problem at a conference in London next week.


Professor Alan Davison, Co-ordinator of the research programme, said, “What most people don’t realise is that they are helping to change areas like the Pennines or the Lake District, which are considered to be unspoilt. Their cars are small ‘fertiliser factories’ so every time they start the engine nitrate is released and can be carried over long distances before falling on plants and soils.”

He added, “The chicken and pork that we eat has played a part in contributing to the ammonia that is changing the biodiversity in our countryside. I wonder if farmers, including organic growers, understand that their land is receiving a significant amount of ‘free’ fertiliser.”

Nitrogen cascades through the environment like no other pollutant and at the right level is good – plants depend on the use of nitrogenous fertilisers. But this extra nitrogen is providing an environment for ‘takeover bids’ on the land from more aggressive plant species. The winners are the plants that can mop up nitrogen – grasses, brambles and nettles. They will move in on slower growing plants that live in habitats where low levels of nitrogen are more usual - heather moorland will become grassland, for example. These are often the species in our countryside that we try to conserve.

Land is not the only element affected. It has always been thought that freshwater lakes are immune to the effects of additional nitrogen but GANE researchers have shown that this is not the case. There are nitrogen-sensitive lakes and their plant life may well be at risk from nitrogen deposition.

The extra nitrogen is not just acting on a local scale. It increases the emission from soil and water of the potent greenhouse gas, nitrous oxide.

Findings from the research are not all gloomy – there is good news to be reported as well. GANE scientists have produced a clearer picture of the sources and rates of emission of this gas that will help the UK fulfil its International obligations for reductions. To estimate emissions on a large scale it is necessary to use an ‘emission factor’. The GANE scientists have shown that the UN’s Intergovernmental Panel on Climate Change’s emission factor for ground and drainage waters overestimates nitrous oxide emissions. Only 0.2% of the nitrate in water, not 1.5%, is emitted as nitrous oxide.

Marion O’Sullivan | alfa
Further information:
http://www.nerc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>