Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adapting air travel to ease its impact on the environment

25.01.2005


Climate change and the future of air travel



Researchers are investigating how air travel can be adapted to ease its impact on the environment.

The investigation focuses on how aircraft can avoid creating vapour trails, also known as contrails. These spindly threads of condensation may not seem important but some persist for hours and behave in the same way as high altitude cirrus clouds, trapping warmth in the atmosphere and exacerbating global warming.


Air travel is currently growing at between 3 and 5% per year and cargo transportation by air is increasing by 7% per year. The researchers at Imperial College London are combining predictions from climate change models with air traffic simulations to predict contrail formation and identify ways of reducing it.

The Engineering and Physical Sciences Research Council (EPSRC) is funding the work, which is a joint effort between the Department of Civil & Environmental Engineering and the Department of Physics at Imperial College London.

As the climate changes, so will the general condition of the atmosphere and the new work aims to understand how this will affect contrail formation. They have already found that aircraft could generally minimise contrail formation by flying lower in the atmosphere. Their work suggests that in the summer, when the air is warmer, restricting jets to an altitude of 31,000 feet could be beneficial. In winter, when the air cools, and contrail formation becomes more likely, the ceiling should be no more then 24,000 feet.

Day to day variability in atmospheric conditions were also found to have a substantial effect on the ability of simple altitude restrictions to be an effective policy. Current work is aiming to examine more complex aircraft routing strategies aimed at avoiding air masses that lead to persistent contrail formation.

At present the production of contrails and their effect on the environment is not taken into account in government assessments of the environmental impact of air travel. Team leader, Dr Robert Noland, thinks it should be. He says, “We’d like this research to inform government policies, not just in the UK but throughout the EU and the rest of the world so that decision makers can take all the environmental issues into account and do the right thing.”

Dr Noland also believes that the work has direct relevance to aircraft manufacturers. He says, “There is little more that aircraft designers can do to increase engine fuel efficiency at high altitude, but designing new aircraft that can be as fuel efficient flying at 20,000 feet, as today’s aircraft are at 35,000 feet, would help eliminate contrails.”

Notes for Editors:
Contrails form when hot, humid air created in a jet engine mixes with the low pressure, cold surrounding air of the atmosphere. Generally, the higher the altitude, the colder the air and the more likely contrail formation becomes. It is similar to the way your breath condenses into a vaporous cloud on a cold day.

A key consideration in this study is the proliferation of short-haul flights. These are currently thought to be more environmentally disruptive than long-haul flights because of the high quantity of fuel needed for take-off and landing. In a short haul, this is not balanced by a long, fuel-efficient cruise. However, contrail effects are not taken into account in current environmental risk assessments of air travel. The team are investigating whether the picture would change if they were. The reason is that short-haul flights seldom reach the altitude where contrails form and this might make them overall more environmentally friendly than high-flying long-haul flights.

As well as the seasonal variation in atmospheric conditions, which the team estimated would require a general ceiling on flight altitudes (summer: 31,000 feet, winter: 24,000 feet), they also found significant day to day variations, so any contrail reduction strategy would work better if it were reactive on a daily basis. They also found days when the atmospheric conditions made it almost impossible to avoid contrail formation.

Aircraft already measure the exterior air conditions, so a simple piece of software, programmed with the details of the jet exhaust temperature and humidity could immediately alert a pilot to when his aircraft is creating a contrail.
Although lower flying aircraft expend more fuel to push themselves through the thicker atmosphere, the team found this less damaging than the radiative forcing* effect of the contrails. Lower altitude flying does, however, slightly increase travel time.

*Radiative forcing is any change in the balance between radiation coming into the atmosphere and radiation going out. Positive radiative forcing tends to warm the surface of the Earth, and negative radiative forcing tends to cool it.
This effort is being led by Dr. Robert Noland in Civil & Environmental Engineering. Dr Ralf Toumi in the Physics Dept is the co-investigator and Dr Victoria Williams in Civil & Environmental Engineering is an EPSRC-funded Research Fellow.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk
http://www.imperial.ac.uk
http://nix.nasa.gov/

More articles from Ecology, The Environment and Conservation:

nachricht 5000 tons of plastic released into the environment every year
12.07.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Climate impact of clouds made from airplane contrails may triple by 2050
27.06.2019 | European Geosciences Union

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>