Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adapting air travel to ease its impact on the environment

25.01.2005


Climate change and the future of air travel



Researchers are investigating how air travel can be adapted to ease its impact on the environment.

The investigation focuses on how aircraft can avoid creating vapour trails, also known as contrails. These spindly threads of condensation may not seem important but some persist for hours and behave in the same way as high altitude cirrus clouds, trapping warmth in the atmosphere and exacerbating global warming.


Air travel is currently growing at between 3 and 5% per year and cargo transportation by air is increasing by 7% per year. The researchers at Imperial College London are combining predictions from climate change models with air traffic simulations to predict contrail formation and identify ways of reducing it.

The Engineering and Physical Sciences Research Council (EPSRC) is funding the work, which is a joint effort between the Department of Civil & Environmental Engineering and the Department of Physics at Imperial College London.

As the climate changes, so will the general condition of the atmosphere and the new work aims to understand how this will affect contrail formation. They have already found that aircraft could generally minimise contrail formation by flying lower in the atmosphere. Their work suggests that in the summer, when the air is warmer, restricting jets to an altitude of 31,000 feet could be beneficial. In winter, when the air cools, and contrail formation becomes more likely, the ceiling should be no more then 24,000 feet.

Day to day variability in atmospheric conditions were also found to have a substantial effect on the ability of simple altitude restrictions to be an effective policy. Current work is aiming to examine more complex aircraft routing strategies aimed at avoiding air masses that lead to persistent contrail formation.

At present the production of contrails and their effect on the environment is not taken into account in government assessments of the environmental impact of air travel. Team leader, Dr Robert Noland, thinks it should be. He says, “We’d like this research to inform government policies, not just in the UK but throughout the EU and the rest of the world so that decision makers can take all the environmental issues into account and do the right thing.”

Dr Noland also believes that the work has direct relevance to aircraft manufacturers. He says, “There is little more that aircraft designers can do to increase engine fuel efficiency at high altitude, but designing new aircraft that can be as fuel efficient flying at 20,000 feet, as today’s aircraft are at 35,000 feet, would help eliminate contrails.”

Notes for Editors:
Contrails form when hot, humid air created in a jet engine mixes with the low pressure, cold surrounding air of the atmosphere. Generally, the higher the altitude, the colder the air and the more likely contrail formation becomes. It is similar to the way your breath condenses into a vaporous cloud on a cold day.

A key consideration in this study is the proliferation of short-haul flights. These are currently thought to be more environmentally disruptive than long-haul flights because of the high quantity of fuel needed for take-off and landing. In a short haul, this is not balanced by a long, fuel-efficient cruise. However, contrail effects are not taken into account in current environmental risk assessments of air travel. The team are investigating whether the picture would change if they were. The reason is that short-haul flights seldom reach the altitude where contrails form and this might make them overall more environmentally friendly than high-flying long-haul flights.

As well as the seasonal variation in atmospheric conditions, which the team estimated would require a general ceiling on flight altitudes (summer: 31,000 feet, winter: 24,000 feet), they also found significant day to day variations, so any contrail reduction strategy would work better if it were reactive on a daily basis. They also found days when the atmospheric conditions made it almost impossible to avoid contrail formation.

Aircraft already measure the exterior air conditions, so a simple piece of software, programmed with the details of the jet exhaust temperature and humidity could immediately alert a pilot to when his aircraft is creating a contrail.
Although lower flying aircraft expend more fuel to push themselves through the thicker atmosphere, the team found this less damaging than the radiative forcing* effect of the contrails. Lower altitude flying does, however, slightly increase travel time.

*Radiative forcing is any change in the balance between radiation coming into the atmosphere and radiation going out. Positive radiative forcing tends to warm the surface of the Earth, and negative radiative forcing tends to cool it.
This effort is being led by Dr. Robert Noland in Civil & Environmental Engineering. Dr Ralf Toumi in the Physics Dept is the co-investigator and Dr Victoria Williams in Civil & Environmental Engineering is an EPSRC-funded Research Fellow.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk
http://www.imperial.ac.uk
http://nix.nasa.gov/

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>