Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban ecology study witnessing the birth of a ’designer ecosystem’

04.01.2005


When Arizona State University’s Central Arizona-Phoenix Long Term Ecological Research Project (CAP LTER) was funded by the National Science Foundation in 1997, more than 50 scientists signed on to do the multidisciplinary research knowing that they were embarking on something unusual – the first ever long-term ecological study of "a human-dominated ecosystem," aka, a city.



Seven years later, the first phase of the research has been completed and NSF has renewed the project with a second grant of $4.9 million for six more years of study, indicating the agency’s satisfaction with the research’s accomplishments. The long-term study has made more than just a good start, however -- the project has produced results that may transform the study of ecology.

After seven years, the project scientists are increasingly convinced that they are looking at a new kind of ecosystem – an ecosystem that is radically different from the native desert that surrounds it and driven in part by forces unlike those usually studied by ecologists.


"It’s not what people generally think – they think there’s either nature or there are cities," said Charles Redman, director of ASU’s Center for Environmental Studies, and one of the project’s principal investigators. "That’s what this is all about – there is nature in the city. The city is part of nature."

Along with their partner LTER in Baltimore, the development of urban LTERs was considered a major leap forward in the field of ecology both because they included human culture as a "driver" of – and "responder" to -- the ecosystem being studied, and also because the research would include studies far outside traditional ecology or even the biosciences, climatology and earth sciences: sociology, anthropology, engineering, and economics.

Phoenix as chosen as one of the two urban LTER sites because it is a fast growing desert city, like many of the world’s emerging cities, with an archeological record for the area going back more than 2,000 years. The city has gone from a small farming center to a major metropolitan area in little more than a century, with the major growth occurring after World War II.

"It’s an ideal situation, because the development of the city has literally been happening as we watch," said ASU Life Sciences Professor Nancy Grimm, CAP LTER’s other principal investigator. "We’ve made an assault on understanding the structure and function of the urban ecosystem on numerous fronts. From air quality to birds and bugs and plants to water quality and usage, to landscaping choices, climate, economics, zoning, pets… we are considering everything that is part of the ecosystem."

One of the most interesting things that has been revealed is the special nature of the urban biota, which has a distinctive mixture of native and exotic plants and animals, but differs even further in the dynamics of how these organisms interact.

"We have been defining the Phoenix urban ecosystem, which, it turns out, functions very much like an ecosystem with bugs and birds and plants -- but in different sets of relationships, with much different abundances," said Redman. "The abundance of organisms is higher overall. If you just measure it, it is richer in town than in the desert."

The scientists note that the urban environment differs from the surrounding desert in that it has an ample, year-round supply of basic life resources such as water, that in the native environment is seasonal or highly localized. This leads to a larger and more consistent supply of growing plants, which are the base of the food chain, and ultimately to a greater number of animals, such as birds.

"If you know anything about abundances of birds in desert environments, you know that birds are concentrated along river corridors and riparian zones and that diversity also is concentrated there," said Grimm. "What Phoenicians have done is to take this river, which was one localized area, and capture the water and distribute it over a very, very large area. If you fly in you can see this – you can see that we have a lot more plant biomass, a lot more trees. There are little lakes scattered all over the place. Scottsdale since 1940 has gone from zero to 167 little lakes."

However, the larger populations of birds that thrive in the city’s oasis are not the same as those in the desert, but are less diverse in species, with "generalist" native and non-native species (such as mourning doves, grackles and English sparrows) being favored over many of the more highly specialized birds found in the natural desert.

"What we’ve found is that some species are missing, while others, in fact, are enriched," said Redman. "What you have, in fact, is the creation of an urban ecosystem which is quite distinct but not necessarily impoverished."

One study in the project, for example, found that Abert’s Towhee, a mid-sized bird that is relatively uncommon in the desert, thrives in Phoenix because the city is crisscrossed with canals, which mimic the riverbanks the species normally frequents, and giving the birds ready access to lawns and golf courses which are ideal for its ground-feeding habits. There are also populations of birds not normally found in the low desert at all, including Ravens and Peach-Faced Lovebirds.

While any birder can see that the diversity and abundances of birds are different, to the researchers, a more important detail is something that is practically invisible -- a major shift in the environment’s food web – what ecologists call the "trophic structure" – making the city’s biology systematically different from the desert’s.

"We’ve been monitoring and assessing the nature of trophic structure of Phoenix’s wildlife – the big animals, the smaller animals that they eat and the plants that they eat," Redman said. "You’re spreading water all over the environment, and this is one of the prime reasons for the greater abundances of birds. This also has consequences for many, many other things. A fun thing is that this high abundance of birds, in turn means that a variety of insects are kept at very low abundance."

Through experiments, the group found that insects, whose populations are controlled in the native desert mainly by seasonal scarcity of vegetation, instead are kept in check in the city by a larger population of birds. Bird populations are large because of ample water and the absence of their natural predators -- especially hawks (though they are partially replaced by cats). In turn, the lack of predation leads the city birds, most of whom are mainly seed-eating species, to spend more time hunting nutrient-rich insects, a behavior that would be risky around predators.

Other behavioral and trophic shifts also appear to follow. Particularly intriguing is the further implication that populations and trophic structures vary somewhat within the city depending on the economic status of the neighborhood. Economic issues appear to be a controlling factor for the urban ecosystem, much like climate and the abundance or absence of resources is in the surrounding desert environment.

"The urban ecosystem is driven very largely by the local economy," said Grimm. "The populations are systematically altered by the decisions that we make and the relationships of the animals have been shuffled."

"There’s also a relationship our researchers are seeing between the spatial distribution of where the water is, where all the plants are and where the wealth is," she noted. "This is something that we still don’t know the mechanisms of, but one of the most interesting findings is that the diversity of plants in the Phoenix area is related strongly to family income -- higher family income, higher plant diversity; lower family income, lower plant diversity. We don’t know the mechanisms, but it’s an interesting phenomenon."

Grimm and Redman note that the findings also point out that human choices are also modifying the physical environment, from its soil chemistry to the urban heat island and microclimates, and that the implication is that the urban ecosystem, while complicated, could potentially be manipulated and controlled.

"There are things that humans can deliberately manipulate, like the water system. But then there are a lot of by-products of our activities -- big changes in our ecosystem that we don’t necessarily recognize or try to control," Grimm said. "The good example of one of these is a big increase in nitrogen input, which comes about because of the burning of fossil fuels in cars. Driving around fertilizes the ecosystem.

"Is fertilizing a good thing? One of the things that we are going to do in the next phase is to investigate the consequences," she said.

While the team’s interest is in doing fundamental ecology research, there are also some important applied science issues behind the project. "What we really want to know is whether we can have a sustainable urban ecosystem in this kind of environment and setting. What are the elements of it that are warning signs of vulnerability, of some kind of event that could cause collapse? How do our institutions and the systems we have set up stand up against various kinds of stress? Is the urban ecosystem resilient?" Grimm asked.

"People in ecology are beginning to talk about designer ecosystems – systems that have been heavily influenced by humans. What we’re doing is pioneering this," Grimm said.

James Hathaway | EurekAlert!
Further information:
http://ww.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>