Researchers at North Carolina State University have shown that the amount of aerosols – dust particles, soot from automobile emissions and factories, and other airborne particles – in the atmosphere has a significant impact on whether the surface area below either absorbs or emits more carbon dioxide (CO2).
The researchers discovered that changes in the levels of airborne aerosols resulted in changes to the terrestrial carbon cycle, or the cycle in which CO2 is absorbed by plant photosynthesis and then emitted by the soil.
Besides documenting the effects of aerosols on the carbon cycle, the research also showed that the type of landscape also influenced whether a surface area served as a carbon sink, an area that absorbs more CO2 than it emits, or as a carbon source, an area that emits more CO2 than it absorbs. In the research project, six locations across the United States – encompassing forests, croplands and grasslands – were studied. Increased amounts of aerosols over forests and croplands resulted in surface areas below becoming carbon sinks, but increased amounts of aerosols over grasslands resulted in surface areas becoming carbon sources.
Dr. Dev Niyogi | EurekAlert!
Further information:
http://www.ncsu.edu
Northeast-Atlantic fish stocks: Recovery driven by improved management
04.02.2019 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei
New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark
For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.
The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...
Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens
Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...
Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light
When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...
The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...
Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.
DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.
Anzeige
Anzeige
Global Legal Hackathon at HAW Hamburg
11.02.2019 | Event News
The world of quantum chemistry meets in Heidelberg
30.01.2019 | Event News
16.01.2019 | Event News
The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Interdisciplinary Research
Laser Processes for Multi-Functional Composites
18.02.2019 | Process Engineering
Scientists Create New Map of Brain’s Immune System
18.02.2019 | Studies and Analyses