Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trace gases are key to halting global warming

19.11.2004


The Earth Institute at Columbia University, NYC--Researchers suggest that reductions of trace gases may allow stabilization of climate so that additional global warming would be less than 1° C, a level needed to maintain global coastlines. Although carbon dioxide emissions, an inherent product of fossil fuel use, must also be slowed, the required carbon dioxide reduction is much more feasible if trace gases decrease.

In the current edition of Proceedings of the National Academy of Sciences, Drs. James Hansen and Makiko Sato of NASA’s Goddard Institute for Space Studies (GISS) at the Earth Institute at Columbia University suggest that avoidance of large climate change requires the global community to consider aggressive reductions in the emissions of both carbon dioxide and non-carbon dioxide gases called trace gases. Humans have already increased the amount of carbon dioxide in the air from 280 parts per million (ppm) to 380 ppm. If the world continues on its current trajectory of increasing carbon dioxide, methane and ozone, the likely result will be large climate change, with sea level rise of a few meters or more.

Hansen and Sato point out that if methane and other trace gases are reduced, climate could be stabilized, with warming less than 1°C, at carbon dioxide levels of 520 ppm. However, if the trace gases continue to increase, carbon dioxide would have to be kept beneath 440 ppm. A cap of 440 ppm seems practically impossible to stay under due to existing energy infrastructure. However, Hansen and Sato suggest that, with the possibility of new technologies by mid-century, it is feasible to keep carbon dioxide levels from exceeding approximately 520 ppm.



The co-authors suggest that the non-CO2 gases could be addressed via a Montreal Protocol-like process, or by adding additional gases to the Montreal Protocol itself. The Montreal Protocol has been very effective in reducing emissions of gases that destroy stratospheric ozone. Developed and developing countries have worked together harmoniously in this process, with the World Bank providing support for participation of developing countries.

"Carbon dioxide is the main greenhouse gas (GHG), and slowdown of its emissions must have priority. It will be a growing issue in international relations for decades, if not longer," says Dr. Hansen. "However, that does not necessarily mean that ’Kyoto’ is the best way to address the trace gases. ’Kyoto’ gives too little or no weight to gases such as methane, the trace gas HFC-134a, ozone and the precursor gases that form ozone. We could get moving now on non-carbon dioxide gases with benefits such as improved human health, in addition to a slowing of global warming. The resulting international good will might also make discussions about carbon dioxide more productive."

"The slowdown in the growth rate of the GHGs contribution to global warming from the peak in the 1980s is due mainly to the phase out of CFCs as dictated by the Montreal Protocol. This success could be diminished by increases of other trace gases not controlled by the Montreal Protocol. We argue that it is well worth extending the Montreal Protocol machinery to phase out many of these trace gases," added Sato.

Additionally, the co-authors warn that trace gases also influence the rate at which major atmospheric GHGs are sequestered, a primary strategy for curbing global warming from carbon dioxide emissions. As global warming proceeds, the Earth naturally releases carbon dioxide, methane and nitrous oxide. Therefore, another benefit of reducing trace gases and their warming effect is a reduction of the induced ’natural’ releases of these gases. Other bonuses of reducing warming agents such as ozone and soot are improvements in human health and agricultural productivity.

NASA provided funding for this study, and the NOAA Climate Monitoring and Diagnostics Laboratory provided access to current measurements of GHGs.

Katie Mastriani | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>