Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Mollusca Do Not Die On Land

08.11.2004


Way out exists even from the most desperate situations. Water mollusca prove that statement. At first sight, they are absolutely unable to live without water, as they consist almost totally from water. However, this is only at first sight. Russian scientists have analyzed their data and the data from their colleagues who observed mollusca on the banks of various water bodies and have discovered the adaptation mechanisms these animals employ to live without water.



Water mollusca are used to being constantly thrown out by sea-waves on the shore, or the imminent high tide “forgets” to take mollusca along with it, or the native lake can dry up. Mollusca got accustomed to that and elaborated a lot of accommodation mechanisms that allow to survive on land for a long time – for up to a year. However, the term depends on atmospheric temperature: the higher the temperature is, the less chances the animal has to survive. Mollusca’s adaptation mechanisms were investigated by researchers of the Severtsov Institute of Ecology and Evolution Problems, Russian Academy of Sciences.

The water mollusc that remained on land has to solve two major problems: to retain moisture and to breathe in unusual conditions. While the mollusc is only starting to dry off, it is actively crawling and collecting food in reserve if it is available (it should be noted that even the mollusca that normally can only swim are crawling in these conditions). But moisture should be preserved for respiratory surface, otherwise the mollusc will be unable to breathe, therefore, some time later it passes to the second phase of its self-rescue. Special viscous liquid is excreted, the origin of the liquid is still unknown to researchers. The liquid serves as lubricant and does not allow the animal to dry up. To intensify the effect of water-retaining lubricant, some mollusca bunch into packs of 3 to 6 individuals and hide under stones, in the rock cracks – i.e., in the shadow.


The case is easier for the mollusca that have big shells and special folds or covers to close up the shell with. Then they turn out to be in a waterproof “house” and lose less moisture. However, it will soon be nothing to breathe in the “house”, and then chemical changes take place in the mollusc’s organism, these changes allowing to live without oxygen or interaction with the environment. The hemolymph (i.e. mollusc’s blood) protects the mollusc from being poisoned by products of such airless metabolism, calcium from the internal surface of the shell assisting the hemolymph. Approximately the same role is played by the so-called crystalline pedicel – the organ that can be apparently considered a strategic stock of food and oxygen.

The unlucky mollusca that are deprived of shells or whose shells are small have to bury oneselves into the soil – it is cooler there. Mollusca bury themselves so skilfully, as if they had spent all their life in the soil – sometimes deeper than 35 centimeters. If a small shell is still in place, then, having buried itself, the mollusc draws the body in the shell and excretes a protective film to close up the “entry”. It is interesting to note that mollusca are apparently great individualists: even representatives of the same species living in the same water body bury themselves at different depth, excrete different protective films, and some do not bury themselves at all. Nevertheless, whatever the mollusc does, whatever the shell it has to protect itself, it would lose moisture all the same: within a long drought the mollusc can “grow thin “ by 40 to 80 percent.

The respiration problem is also solved by water mollusca in different ways. When in water, some breathe with gills, some – with lung, and when on land they have to “absorb” oxygen by the entire body – that is possible due to the blood vessel network located close to the surface. Besides, combined respiration is common among mollusca, i.e. they can breath both by the atmospheric air and by the oxygen dissolved in water. This skill is inherent to, for example, freshwater mollusca that inhabit constantly drying up water bodies.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Ecology, The Environment and Conservation:

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>