Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unlock mysteries of toxic metals in the largest contaminated site in United States

02.11.2004


Copper mining in Butte and Anaconda, Montana, starting in 1860’s, poisoned the air, the land, and the water; well over 100 years later, contaminants are still found as far as 300 miles down the Clark Fork River, whose headwaters are in that area.



The presence of the contaminants has been known for many decades. But the interaction of the heavy metals and other compounds in the soil, streams, and rivers were unknown until Virginia Tech professor of geosciences Michael Hochella went all the way to the University of Munster, Germany as a Fulbright Scholar, then as a Humboldt Fellow, to use sophisticated equipment that allowed him to examine lead, arsenic and other materials at the nanometer level (a nanometer being about the size of 10 atoms). He will present his findings, including the discovery of a new mineral, at the 116th national meeting of the Geological Society of America in Denver Nov. 7-10.

When the mine was active, ore smelting on the site poured arsenic and sulfur into the air. House cats, because they lick their fur trying to stay clean, died young. People in the area had very pale skin as a result of arsenic poisoning. "Waste material from mining was dumped in piles that now cover hundreds of acres of land," said Hochella. "This material has been rained on and snowed on for a hundred years and run off into the river. The mining pits have now filled with water, contaminating ground water. If you go into the stream beds and flood plains and dig up muck and dirt, just with a garden trowel, and analyze that dirt, you will find high levels of arsenic, zinc, lead, and copper. Zinc and copper, not ordinarily considered contaminants, are in these concentrations. Nothing grows in these areas."


"So, we knew the metals are there, but we have not known where they reside in the streams and soils," said Hochella. "Is the lead associated with other minerals or with biological material, or is it in a separate phase? No one knew." To predict bioavailability and movement, you need to know what holds the metal, he said.

Hochella used a transmission electron microscope (TEM) to take a close look. "It takes months. You have to prepare the samples properly before you do the microscopy. But then you can magnify the material by hundreds of thousands of time. With that magnification, you can find what you are looking for," Hochella said.

Hochella, Munster professor Andrew Putnis, and Japanese post-doc Takeshi Kasama looked at samples and found important minerals three to 200 nanometers in size. "We found what we think is a new mineral, a manganese oxide hydrate that takes up lead, arsenic, copper, and zinc like a sponge. We hadn’t even known it was there."

The researchers also found another iron oxide mineral that is well known, ferrihydrite, that had been thought to be the most active phase for taking up the contaminant metals. " And we found other minerals that take up these metals. But the manganese mineral is much more reactive then even the ferrihydrite," Hochella said. "We were not necessarily surprised," he said. "Former PhD student Erin O’Reilly did related lab experiments that showed this activity. But now we’ve found a real case in nature."

The next step is to find out what the presence of manganese does to the bioavailability of the toxic minerals, he said. Virginia Tech will be purchasing a new TEM soon for this and other research that requires extremely high magnification.

Pyrite, which is plentiful throughout the mining area, breaks down in weathering environments – from sulfides to sulfates – then reforms to sulfides in the stream, taking up heavy metals as it crystallizes. "These are extremely tiny crystals, a couple of nanometers, and are very reactive," Hochella said. "It allows the metals to be bioavailable, when it gets on a fish’s gills, for instance."

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>