Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Munching microbes could cleanse arsenic-contaminated groundwater

27.10.2004


Microbial processes ultimately determine whether arsenic builds to dangerous levels in groundwater, say researchers at the University of Illinois at Urbana-Champaign. Remediation may be as simple as stimulating certain microbes to grow.



Arsenic contamination is a serious threat to human health. In the Ganges Delta of Bangladesh, for example, chronic exposure to arsenic has been linked to serious medical conditions, including hypertension, cardiovascular disease and a variety of cancers. "The threat extends to Central Illinois, where there are very high levels of arsenic contamination in a number of wells," said Craig Bethke, a professor of geology at Illinois and corresponding author of a paper to appear in the November issue of the journal Geology. "We also discovered important links between the amount of organic material dissolved in the groundwater and the concentrations of sulfate and arsenic."

The researchers analyzed water from 21 wells at various depths in the Mahomet aquifer, a regional water supply for Central Illinois. "The Mahomet aquifer was produced by a glacier, which pulverized and homogenized the sediments," Bethke said. "As a result, arsenic sources that leach into the groundwater are pretty uniformly distributed." Surprisingly, however, arsenic concentration varied strongly from well to well, Bethke said. "Concentrations may reach hundreds of micrograms per liter in one well – which is enough to make people very sick – but fall below detection limits in a nearby well."


The concentration of arsenic varied inversely with the concentration of sulfate, the researchers found. Methane concentration also varied with the sulfate content. "We believe this reflects the distribution of microbial populations in the aquifer system," said graduate student Matthew Kirk. "Our analyses suggest the aquifer is divided into zones of mixed microbial activity, some dominated by sulfate-reducing bacteria, others by methanogens." Sulfate-reducing bacteria will consume sulfate and reduce it into sulfide. The sulfide then reacts to precipitate arsenic, leaving little in solution.

If the sulfate-reducing bacteria run out of sulfate, methanogenic bacteria take over as the dominant metabolic force, Kirk said. Because methanogenic bacteria don’t produce sulfide, there is no precipitation pathway for the arsenic, which then accumulates to high levels in the groundwater. "In the Mahomet aquifer, the balance between the amount of organic material and the amount of sulfate that leaches into the groundwater appears to control whether the water becomes contaminated," Kirk said. "Where the supply of sulfate is high relative to organic matter, sulfate remains available and sulfate-reducing bacteria keep arsenic levels low. But, where the supply of organic matter is high relative to sulfate, the sulfate has been depleted, and arsenic may accumulate."

What does this mean to people living in Illinois?

"The majority of wells in Central Illinois belong to individual homes and farms," Bethke said. "Lacking effective water treatment and testing, private wells are more at risk of arsenic poisoning."

There is good news, however. The researchers’ findings suggest that groundwater contaminated with arsenic might be easily identified and remediated.

"Unlike detecting the presence of arsenic – which generally requires a sensitive laboratory analysis – testing for sulfate is simple and straightforward," Bethke said. "If all waters containing sulfate are safe, as in our dataset, then measuring sulfate level would be an easy but reliable field test to identify safe drinking water from unsafe."

Adding sulfate to naturally contaminated groundwater might be a simple but effective method to sequester the arsenic, Kirk said. "The bacteria are already present, so all you have to do is stimulate them." Sulfate salts, he said, are inexpensive, readily soluble and easily obtained.

In addition to Bethke and Kirk, the team included UI geology professor Bruce Fouke, research scientist Robert Sanford, graduate students Jungho Park and Gusheng Jin, and Illinois State Water Survey project scientist Thomas Holm. The U.S. Department of Energy funded the work.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>