Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large-Scale Forces Shape Local Ocean Life, Global Study Shows

21.10.2004


Ecological research, 30 feet down - Jon Witman, professor of biology, photographs an 18-by-24-inch sample of a Caribbean rock wall. He and his team produced and analyzed more than 1,500 such marine images from around the world.


Latitude matters - A photographic sample taken from a ledge off Cape Town, South Africa, is packed with sponges, anemones, soft corals, sea fans and bryzoans, whose name, taken from the Greek, means “moss animals.”


In an epic research project spanning 14 years and seven continents, a research team based at Brown University has photographed and cataloged nearly 3,000 species of sponges, corals and other shallow water ocean invertebrates from Antarctica to Australia. The key finding: Large-scale forces play a pivotal role in local species diversity. Results are published in the current online early edition of the Proceedings of the National Academy of Sciences.

In a groundbreaking, globetrotting study of sea life in shallow waters, a research team led by a Brown University marine ecologist has found that the richness of species diversity in a small patch of ocean is powerfully shaped by far-away forces.

Jon Witman, associate professor of biology at Brown, said this finding was a surprise. At the start of the project, Witman expected to find that forces specific to a small area of ocean – predation, species competition and disturbances such as hurricanes or landslides – would play a central role in limiting the number of species found there.



But Witman and his team found that species diversity in local areas, no bigger than a half-mile square, was directly proportional to species diversity in that region, which can span thousands of square miles. Researchers came to this conclusion after examining 1,500 photographic samples taken of invertebrates clinging to rock walls in every corner of the world.

For example, Witman and his team sampled five sites from Maine to Massachusetts and found anywhere from 26 to 51 species. This reflects the comparatively low marine diversity in the Gulf of Maine. In contrast, in the warm, teeming waters off of the Palau Islands near the Philippines, divers counted as many as 300 species living in an area smaller than a basketball court. This reflects the high level of diversity found in Micronesia. With a few exceptions, these patterns held true around the globe.

Witman believes that local interactions, such as storms and predators, still exert a strong influence on biodiversity, but the associate professor in the Department of Ecology and Evolutionary Biology now sees that regional forces are critical to maintaining species variation. These large-scale influences include currents that disperse larvae across hundreds of miles or the creation of new species caused by geological upheaval and biotic isolation millions of years ago. Global warming and pollution are other regional forces that can impact local diversity. “The work is a wake-up call,” Witman said. “We need to think about regional processes if we want to preserve biodiversity.”

Witman said results from the project, published in the current early online edition of the Proceedings of the National Academy of Sciences, have implications for conservation efforts.

Governments or non-profits interested in maintaining biodiversity in the ocean – or on land – shouldn’t simply create single preserves or parks. Instead, Witman said, they should create as many as possible across a broad area. Of particular importance, he said, is safeguarding “source areas” for high biodiversity that act as wellsprings of eggs, seeds or vital nutrients or that provide important habitat for critical species. While scientists know that tropical coral reefs and the Amazon rainforest act as source areas, Witman said more areas must be identified. “This is particularly true in the marine environment,” he said. “We don’t know much about source pools. We need a lot more research in this area.”

The project focused on invertebrate species found in shallow water, such as sponges, corals, mollusks, worms, barnacles, anemones, urchins and sea fans. These animals were studied in one habitat: flat, vertical rock walls, such as ones found along reefs, in fjords, or in other parts of coastline. Witman said the choice was practical: These invertebrates can’t move, so they could be counted. And rock walls can be found from the poles to coral reefs and leave few places for creatures to hide, so estimates would be comparable and highly accurate.

To get a true snapshot of the diversity of these species around the world, Witman and his team chose 12 distinct biogeographic regions and randomly sampled at a total of 49 sites within these regions, which included the Gulf of Maine, Iceland, the Northeast Pacific, the Galapagos Islands, Chilean Patagonia, the Antarctic Peninsula, the Eastern Caribbean, Southwest Africa, Southwest New Zealand, the Seychelles Islands, the Norfolk Islands and the Palau Islands.

At each site, scientists dove down 30 to 50 feet below the surface. Then they took standard-sized (18 by 24 inches) photographs of a rock wall area. They took anywhere from 18 to 200 of these photo samples at each site. Back in the lab, they examined a total of 1,500 slides and counted the species found in each frame.

The project took more than 14 years to complete. It led to another key finding: Latitude also plays a big role in local species richness.

At the poles, partly due to the harsh environment and glacial scouring, there are fewer species. But moving closer to the equator, the number of species increases. While this is a long-held and widely accepted phenomenon on land, it has been brought into question in the past decade as scientists have found a surprisingly varied array of ocean animals in Antarctica. This is the first global study to show that latitude affects species richness in shallow-water ocean animals.

The research team also included Ron Etter, a professor of biology at the University of Massachusetts–Boston and Franz Smith, a former research associate of Witman’s who is currently a marine scientist in New Zealand

The National Science Foundation primarily funded the work. The National Undersea Research Program, the Andrew Mellon Foundation, and the Helen and Merrill Bank Foundation also provided support.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Ecology, The Environment and Conservation:

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Increasing frequency of ocean storms could alter kelp forest ecosystems
30.10.2018 | University of Virginia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>