# Forum for Science, Industry and Business

Search our Site:

## Non-linear mathematical techniques could lead to better flood forecasting

31.08.2004

Although the world in which we live in is non-linear, or multi-dimensional, engineers and scientists have long used linear mathematical formulas to create models to predict physical phenomena such as the infiltration of water through soils or flooding.

But existing theories based on linear models do not accurately portray what actually occurs in nature, claims Temple University civil and environmental engineering professor Sergio Serrano, Ph.D.

In the September issue of the Journal of Hydrologic Engineering, Serrano outlines new mathematical procedures, or techniques, to produce analytical solutions of the complex, non-linear equations of water flow in soils. These new techniques, says Serrano, will help with the development of more accurate and more efficient flood forecasting and contaminant propagation predictions.

In his study, "Modeling Infiltration with Approximate Solutions to Richard’s Equation," Serrano says that although a phenomenon such as water flow is non-linear, we try to solve it numerically, which linearizes the solution. "What we do is assume this phenomenon is linear and try to solve it using linear equations," he says. "For instance, we come up with a model that shows a contaminant plume in either soil or water that is perfectly symmetrical and doesn’t have any of the features that we observe in nature. But if you actually observe a plume in nature, it is not symmetrical and it has a long back-tail that traces back to the source of the contaminant.

"Now, by using these new mathematical methods or techniques, it allows us to consider the true non-linear attributes of this non-linear phenomenon," Serrano adds. "We now can develop a model that actually describes what is happening in nature."

Serrano says that linear equations have been used to solve these problems because they are simpler to do. "People think they are using non-linear equations when they use the computer and numerical techniques, but they have not solved the non-linear equation to explain the phenomenon; they have merely numerically linearized the situation," he says.

Serrano believes that using these new techniques to correctly solve these non-linear equations will help researchers create more accurate models, which will allow scientists and engineers to better remedy environmental problems and better predict flood waves.

"For example, if we assume that the equations that are currently being used to predict flooding are linear, then we will develop a model that predicts a flood downstream to occur at a certain time," explains Serrano. "In reality, we observe that the flood comes at a much earlier time. So what happened? The flood wave propagates in a true non-linear environment.

"We are beginning to explore the use of these non-linear techniques to understand the phenomenon of water flow and flooding, and we are seeing remarkable differences in what is actually happening in nature as opposed to what was predicted to happen under the current linear methods."

Further information:
http://www.temple.edu

### More articles from Ecology, The Environment and Conservation:

Treatment of saline wastewater during algae utilization
14.05.2019 | Jacobs University Bremen gGmbH

Plastic gets a do-over: Breakthrough discovery recycles plastic from the inside out
07.05.2019 | DOE/Lawrence Berkeley National Laboratory

### Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

### Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

### Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

### Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

### Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige