Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental Fate of Nanoparticles

30.08.2004


Materials made from particles one-millionth the size of a fine-point pen tip are touted daily for their current uses and dreamed of possibilities, but a pressing question remains as to the environmental impact of manufactured nano-sized materials.



Purdue University scientists are investigating the interactions between these tiny, many-sided structures and the environment. To further this research, the National Science Foundation (NSF) and Environmental Protection Agency (EPA) have awarded grants totaling nearly $2 million to the Purdue Nanoscale Interdisciplinary Research Team and a colleague from the University of Minnesota.

"This is one of the first major studies solely interested in the environmental fate of carbon-based manufactured nanoparticles," said Purdue’s Ron Turco, principal investigator on the project. "We will test Buckyballs and other manufactured nanomaterials in all types of soil and in water to determine their effect on the environment, including any toxicity toward bacteria and fungi that are key indicators of damage to the ecosystem."


Buckyballs are multi-sided, nano-sized particles that look like hollow soccer balls. The full name for the cluster of carbon atoms is Buckminsterfullerene, after the American architect R. Buckminster Fuller. His design for the geodesic dome is much like the shape of Buckyballs, also known as fullerenes.

First found in a meteorite in 1969, Buckyballs are the third naturally occurring pure carbon molecules known. The others are graphite and diamonds. Experts say that tiny carbon-based manufactured nanotubes are 100 to 1,000 times stronger than steel.

In 1985, researchers began making Buckyballs, which led to a Nobel Prize. These are among the carbon-based manufactured nanoparticles the Purdue scientists will study. Other studies are delving into various aspects of all types of nanoparticles.

"We want to know what would happen if these materials enter the environment in either high or low concentrations," Turco said. "What happens when they get in the soil or the water? I don’t think there will be a problem, but we need to have data."

The scientists will investigate not only the manufactured nanoparticles’ affect on the environment, but also the environment’s affect on them. Using techniques that they employed in assessing the environmental impact of other materials such as pesticides, they will examine how bacteria and fungi in soil and water contribute to the degradation of manufactured nanoparticles.

Other studies are delving into aspects of naturally occurring nanoparticles.

The research team, which was formed by Purdue’s Environmental Science and Engineering Institute, will conduct their work in laboratory settings using all types of soil and water, said Turco, an environmental microbiologist in the School of Agriculture.

Nanomaterials already are used for stain-resistant slacks, sunscreens, cosmetics, automobile paint and bowling balls. In fact, the Eastman Kodak Co. and other corporations began employing nano-sized material as early as the 1930s. Kodak’s use of the material was nano-silver for film coating.

Scientists are testing sensors that use nano-scale materials for detecting biological weapons and other pathogens that may cause disease. Researchers also believe that stronger-than-steel materials made from carbon-based nanotubes could produce the next generation of electronics and even tougher bulletproof vests. Drug delivery and food production may be revolutionized by nanoparticles, which derive the nano part of their name from the Greek meaning dwarf.

The National Science Foundation funding is a four-year, $1.6 million grant for the research team’s Response of Aquatic and Terrestrial Microorganisms to Carbon-based Manufactured Nanoparticles project. The EPA is providing $365,000 over three years to study implications of the materials on soil processes and aquatic toxicity.

The project is composed of five parts handled by seven researchers. The Purdue researchers are Turco, Department of Agronomy; Bruce Applegate, Department of Food Science; Natalie Carroll, Department of Agricultural and Biological Engineering and Department of Youth Development and Agriculture Education; Tim Filley, Department of Earth and Atmospheric Sciences; and Chad Jafvert and Loring Nies, both of the School of Civil Engineering. Robert Blanchette, of the University of Minnesota’s Department of Plant Pathology, also is on the team. Turco and Filley also are members of the Purdue Climate Change Research Center. Applegate is a member of the Center for Food Safety Engineering.

The project components and researchers involved are:

  • Determine the degradability and solubility of carbon-based manufactured nanoparticles in soils and water - Jafvert.
  • Determine baseline information on the toxic effects of carbon-based manufactured nanoparticles on aquatic bacteria - Applegate and Turco.
  • Examine how microbes in the soil react to and alter themselves due to the presence of carbon-based manufactured nanoparticles - Nies, Filley and Turco.
  • Determine how carbon-based manufactured nanoparticles are broken down in the soil, how long the degradation takes, and how the change in their chemical structure during this process affects soil toxicity and processes - Filley, Blanchette and Turco.
  • Educational outreach to promote public awareness and understanding of nanoscale science and its applications - Carroll.

| newswise
Further information:
http://www.esei.purdue.edu/
http://www.nsf.gov
http://www.epa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Project provides information on energy recovery from agricultural residues in Germany and China
13.02.2020 | Deutsches Biomasseforschungszentrum

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>