Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unicellular Organisms Contribute More Nitrogen to Ocean than Reported

27.08.2004



Large, nutrient-poor expanses of the open ocean are getting a substantial nitrogen influx from an abundant group of unicellular organisms that “fix,” or chemically alter, nitrogen into a form usable for biological productivity.

First identified about five years ago, these organisms – about 7 microns in diameter – are fixing nitrogen at rates up to three times higher than previously reported for the Pacific Ocean, according to research published in the Aug. 26, 2004 edition of the journal Nature. On a transect from Oahu, Hawaii, to San Diego, Calif., researchers measured some of the highest rates in this study: Seven milligrams of nitrogen – an essential nutrient for the growth of many organisms – were being injected into the phytoplankton and other organic materials in every square meter of the ocean surface.

“To our surprise, these unicellular nitrogen-fixers are broadly distributed spatially and vertically distributed at least down to 100 meters, and they’re fixing nitrogen at quite high rates,” said lead author Joe Montoya, an associate professor of biology at the Georgia Institute of Technology. “The rates we measured imply a total input of nitrogen that exceeds the rate of nitrogen fixation measured for the cyanobacteria Trichodesmium (traditionally believed to be the dominant marine nitrogen-fixer) in the Pacific Ocean. These unicells are the largest single source of nitrogen entering the water in broad areas of the ocean.”



This level of nitrogen fixation in the Pacific Ocean alone accounts for about 10 percent of the total global oceanic new production of biomass, according to the researchers’ preliminary calculations published in the Nature paper. “This is globally important because new production in the ocean is one of the key forces that drives the uptake of carbon dioxide from the atmosphere into the ocean,” Montoya explained. “This represents a route for trapping and sequestering carbon dioxide and keeping it out of atmospheric circulation for some time.”

Carbon dioxide is one of the naturally occurring gases that traps energy from the sun and helps maintain hospitable temperatures on Earth, creating the “greenhouse effect.” But studies indicate that greenhouse gases that form from vehicle and industrial emissions are enhancing the greenhouse effect and contributing to global climate warming.

The nitrogen-fixation rates reported in Montoya’s study are conservative figures, according to the paper. First, any errors in the researchers’ experiment will tend to produce underestimates of the true rate, Montoya said. Second, they interpreted the data based on the assumption that unicells are only fixing nitrogen for 12 hours a day – a common pattern for other nitrogen-fixing organisms. But some of their data indicate that unicells may actually fix nitrogen around the clock. “These measurements have important geochemical implications, so at this early stage, I would rather undersell than oversell the numbers,” Montoya added. “…. We may be underestimating the true rate of nitrogen fixation by a factor of two.”

With funding from the National Science Foundation (NSF), Montoya first began this research five years ago with colleague Jonathan Zehr, a professor of molecular biology at the University of California at Santa Cruz, and one of the authors on this Nature paper. The other authors are Georgia Tech graduate student Carolyn Holl, University of Hawaii graduate student Andrew Hansen, University of Texas at Austin Associate Professor of Marine Science Tracy Villareal and University of Southern California Professor of Marine Science Douglas Capone.

The research team’s findings – resulting from several month-long research cruises -- have prompted a follow-up study recently funded by NSF. The scientists will continue to survey the Pacific Ocean, as well as the North Atlantic and the South Pacific oceans in two more research cruises in 2006 and 2007. In addition to collecting more detailed nitrogen-fixation rate measurements, the researchers will conduct manipulation experiments to determine if phosphorus, iron or some other environmental factor is playing a role in determining the abundance, distribution and activity of these unicells, Montoya explained.

In the South Pacific, Montoya expects to find high rates of nitrogen fixation by unicells, he said. Their measurements already taken in the marginal waters of the South Pacific – off the coast of northern Australia – yielded the highest recorded rates of nitrogen fixation by unicells to date.

There are still numerous regions of nutrient-poor oceans – typically off the continental shelves from the equator north and south to about 40 degrees latitude – about which little or nothing is known in regard to unicellular nitrogen-fixing organisms, Montoya noted. “We are still at a very early stage in understanding ocean science and how things work in these enormous pieces of the ocean,” he added.

But the researchers anticipate finding that unicells have an even greater impact than they have already discovered. “We haven’t even done the measurements yet for the Atlantic and South Pacific oceans, so in aggregate, unicells might account for an even more substantial fraction of the global new production,” Montoya said.

Overall, this research effort is increasing scientists’ understanding of the fertility of the ocean. “This group of tiny, photosynthetic organisms, whose contribution to the fertility of the ocean is significant, appears to play a critical role in driving the movement of elements through the ocean both in the upper layer of the water and from the atmosphere into the ocean,” Montoya added. Writer: Jane Sanders

| newswise
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Marine oil snow
12.06.2019 | University of Delaware

nachricht Climate driving new right whale movement
29.05.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>