Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-Bacterial Additive Found in Maryland Streams

19.08.2004


A toxic chemical used in hand soaps, cleaners and other personal care products to kill germs is deposited and remains in the environment long after the products are used, according to researchers at the Johns Hopkins Bloomberg School of Public Health. The chemical—3,4,4’-trichlorocarbanilide (triclocarban), marketed under the trademark TCC™—is a non-agricultural polychlorinated phenyl urea pesticide that has been widely used for decades to kill bacteria. The researchers were among the first to detect concentrations of triclocarban in rivers and influent of wastewater treatment facilities. In some instances, they detected concentrations of triclocarban in waterways at levels 20-fold higher than previously reported. The study furnishes the first peer-reviewed environmental data of triclocarban contamination in U.S. water resources. It is published in the online edition of Environmental Science & Technology.



“Our study shows that environmental contamination with triclocarban is widespread but greatly underreported because conventional monitoring techniques cannot detect it,” said the study’s lead author Rolf U. Halden, PhD, PE, assistant professor of the School’s Department of Environmental Health Sciences and founding member of its Center for Water and Health. “We had to specifically develop a new method, termed liquid chromatography electrospray ionization mass spectrometry (LC/ESI/MS), to detect triclocarban in water. Using this new method, we found the disinfectant in all Maryland streams we examined. Now the big question is what are the ecological and human health consequences of triclocarban in the environment? From the chemical structure, one would expect the compound to concentrate in fish and bio-accumulate in the food chain, but at this point we can only speculate,” said Dr. Halden. He added that more research is needed to determine whether the environmental contamination discovered translates into human exposure and any corresponding long-term risks.

Prior to Dr. Halden’s research, the most recent data on the fate of triclocarban in wastewater were from 1975, and no peer-reviewed studies were conducted on the occurrence of the chemical in U.S. water resources. Dr. Halden and his summer research intern, Daniel H. Paull, now a graduate student in the Chemistry department at Johns Hopkins University, analyzed water samples taken from rivers in and around Baltimore, Md., as well as from local water filtration and wastewater treatment plants.


In these samples, the researchers detected triclocarban in river water at concentrations of up to 5.6 micrograms per liter (parts-per-billion) and in wastewater at 6.75 ppb. The highest detected concentrations in surface waters of the Greater Baltimore area were 20 fold higher than previously reported levels, which are currently used by the United States Environmental Protection Agency for evaluation of the ecological and human health risks of triclocarban. The antimicrobial was not detected in any samples of residential well water and municipal drinking water.

“It’s somewhat unsettling that we’ve been using this persistent disinfectant for almost half a century at rates approaching 1 million pounds per year and still have essentially no idea of what exactly happens to the compound after we flush it down the drain. Further studies are needed to determine the effect of triclocarban on aquatic life and potential pathways of unwanted human exposure,” said Dr. Halden.

“Analysis of Triclocarban in Aquatic Samples by Liquid Chromatography Electrospray Ionization Mass Spectrometry” was written by Rolf U. Halden and Daniel H. Paull.

The research was supported by the National Institute for Environmental Health Sciences through the Johns Hopkins Center in Urban and Environmental Health, the Johns Hopkins Bloomberg School of Public Health Faculty Innovation Award and the Johns Hopkins Center for a Livable Future.

Kenna Lowe | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Ecology, The Environment and Conservation:

nachricht 5000 tons of plastic released into the environment every year
12.07.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Climate impact of clouds made from airplane contrails may triple by 2050
27.06.2019 | European Geosciences Union

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>