Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goals unlikely to protect Gulf of Mexico shrimp industry

05.08.2004


Research from the University of Michigan shows that the current federal plan to reduce the "dead zone" in the Gulf of Mexico may not be enough to protect the region’s half billion dollar a year shrimp industry.




Researchers from U-M, Louisiana State University, and Limnotech Inc, an Ann Arbor-based firm, used three different models to analyze oxygen depletion and to answer two key questions: Is the expanded dead zone human-caused? Will a proposed goal of 30 percent nitrogen load reduction be sufficient to reduce the zone to below 5,000 square kilometers, as agreed to by federal, state and tribal leaders in 2001?

The hypoxic region is an area where water lacks sufficient oxygen to sustain most marine life, and in the Gulf of Mexico it is caused by excess nitrogen---largely runoff from mid-west agriculture, said Donald Scavia, director of the Michigan Sea Grant College Program and professor in the School of Natural Resources and Environment.


Scavia’s paper, published in the June edition of the journal Estuaries, found that the 30 percent nitrogen load reduction will not likely shrink the dead zone to the desired 5,000 square kilometers. According to the paper, the nitrogen load must be reduced by 40 percent to 45 percent to achieve that reduction in most years.

Comparing the results of the three models also confirmed anecdotal and sparse historic data indicating that large-scale hypoxia did not occur before the mid-1970s and supports the notion that tripling the nitrogen load over the past 50 years has led to the heightened Gulf of Mexico hypoxia problem.

Confidence in the model analysis was bolstered this year as the operational ecological forecast from the National Oceanic and Atmospheric Administration, based on Scavia’s model, predicted this summer’s dead zone to be 5,400 square miles. Measurements from the NOAA-supported surveys by the Louisiana Universities Marine Consortium documented the zone to be 5,800 square miles, or about the size of Connecticut.

Hypoxia occurs when increased nitrogen runoff causes algae blooms, which sink into bottom waters and are decomposed by bacteria, a process that consumes oxygen. The warm fresh water from the Mississippi and Atchafalaya rivers also layer atop the colder salty Gulf waters, preventing atmospheric oxygen from getting to the bottom. As oxygen is consumed faster than it can be supplied, concentrations decrease below the critical 2 mg/l that defines hypoxia and has resulted in collapses of fisheries in other parts of the world. It’s important to reduce the size of the dead zone in the Gulf because the area is important habitat for shrimp and other important fin and shellfish.

Hypoxia and other problems caused by excess nitrogen load are not unique to the Gulf of Mexico. Resent NOAA reports indicate that this problem occurs in more than 50 percent of US estuaries and the United Nations Environment Program has identified nitrogen overload and its contribution to the rapid growth of oxygen-starved zones in some coastal waters as an emerging global issue.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>