Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pocket gophers serve as ’ecosystem engineers’

03.08.2004


Love them or hate them, pocket gophers have an important effect on the soil and plants where they live. They serve as small "ecosystem engineers" generating major impacts on the physical environment.



Jim Reichman, director of the National Center for Ecological Analysis and Synthesis (NCEAS) at UC Santa Barbara, will present findings on North American pocket gophers, entitled "Bioturbation by subterranean mammalian herbivores and its impact on ecosystems," at the annual meeting of the Ecology Society of America in Portland, Ore., the first week in August. Eric Seabloom of NCEAS is a co-author.

Pocket gophers are named for their fur-lined pouches located on the outside of their mouths. They use the pouches to carry food, hence the name. The rodents vary in length from six to 13 inches. As with most burrowing mammals, pocket gophers have poor eyesight. However, they compensate for this with other, well-developed senses, such as large whiskers, which are sensitive to movement and help them in dark tunnels. They have powerful claws and teeth for digging. They are vegetarian, or herbivores, surviving mostly on roots.


"Gophers live below ground so people don’t think much about them, but they change the landscape and the nutrient availability of the soil," said Seabloom. "They act like little rototillers, loosening and aerating the soil. They loosen the soil and the speed at which plants decompose, causing higher production of plants, and they may be important to the biodiversity of plants. They definitely have an important effect."

Reichman explained that gophers were part of the natural system historically, a major part of the natural habitat. "Gophers were part of the ecosystem before grazing and before people arrived," he said. He is researching the differential effect that gophers have on native plants versus invasive species. This research is contributing to efforts to restore native habitats.

In his presentation he will explain that gophers have an energetically "expensive" life habit in which burrowing through the soil costs 360 to 3,400 times as much energy as walking the same distance on the surface. To keep up with this output they consume large amounts of vegetation, primarily roots, which significantly impacts plants.

"Excavation behavior, which involves construction of long burrows by displacing soil into mounds on the surface, generates major impacts on the physical environment," said Reichman. "These produce a complex mosaic of nutrients and soil conditions that results in vertical mixing (through burrow collapse and moving deep soil to the surface) and horizontal patchiness (in relation to the hollow burrows, refilled burrows, surrounding soil matrix and surface mounds)."

This research may lead to a better understanding of native ecological communities in California, and perhaps even allow for opportunities to restore native grasslands. He explained that ecological conditions on the planet have deteriorated, but now ecologists are learning more about how natural systems work. He noted that marine reserves are an example of one action that is already improving an ecosystem.

"Ecologists have been known for ’gloom and doom,’ but now we are making recommendations for things that can be done," he said.

Gail Gallessich | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>