Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lake research offers clues to managing crayfish invasions

02.08.2004


Rusty crayfish, an invasive species now crawling across the rocky bottoms of lakes and streams throughout the United States and Canada, may not always have a stronghold once they enter these bodies of water.

The findings, part of an ongoing study at the University of Wisconsin-Madison, suggest that the type of interaction among rusty crayfish, fish and aquatic plants may tip the scale, favoring either the invader or native species. This knowledge, the researchers note, may lead to new strategies for removing these trespassers.

Details of the research will be presented Wednesday, Aug. 4, at the annual meeting of the Ecological Society of America in Portland, Ore.



Native to the streams of Ohio, Kentucky and Tennessee, rusty crayfish - measuring up to five inches long - have slowly infiltrated lakes far and wide, including those in New Mexico and Ontario.

Once used for bait, rusty crayfish now are partly responsible for anglers’ declining number of fish catches because they alter fish habitat, ultimately altering fish populations.

For example, these intruders eat fish eggs, displace animals native to the waters and "mow down" aquatic plants - a source of food and shelter for fish, says Brian Roth, a graduate student at UW-Madison’s Center for Limnology and a presenter at the meeting. "They have really dramatic and traumatic effects on the ecosystem."

To date, the promise of successfully removing rusty crayfish and restoring the habitat has been bleak. For example, bait traps tend to catch only the largest rusty crayfish, and biocides, chemicals proven to wipe them out, obliterate everything else in the lake.

But one strategy for managing these invaders once they enter a lake might come from Roth’s preliminary data showing that lakes - even ones similar in water chemistry and the amount of rocky substrate crayfish call home - can have either a low or high abundance of these invaders.

Donning his scuba gear, Roth went underwater to better understand why rusty crayfish are more abundant in certain lakes. During a three-year period, he surveyed six lakes and collected the rusty crayfish that crawled across the rocky bottom in each sampling area. The number of crayfish ranged from just five per square meter in one lake to around 200 in another, the majority of which were newborn crayfish.

Roth and his collaborators then compared the number of crayfish in each sampling area to data collected by another UW-Madison group studying the number of fish and aquatic plants in those same areas.

They found that two of the testing lakes, just five miles apart and similar in water chemistry, looked very different underwater in terms of rusty crayfish, fish and plant life. While Big Lake had a high abundance of the invasive species, but low abundance of bluegills and plants, Wild Rice Lake showed the opposite.

The preliminary findings, says Roth, suggest that alternate states of rusty crayfish abundance exist among lakes. In other words, they can either dominate or be a minor influence. This can happen, he adds, because of the interaction among fish, their habitat and rusty crayfish.

When the crayfish population is small, Roth explains, there tend to be more fish, which feed heavily on the baby crustaceans and, as a result, prevent them from reaching adulthood and reproducing. However, when the crayfish population is large, he says, they overwhelm their predators by producing more offspring and destroying the plant life that protects fish.

"That these alternate states exist gives us some hope that we might be able to take lakes infested by rusty crayfish and force the system from one state to another," says Roth.

To test this theory, he and other researchers are conducting an experiment in which they have set up 300 rusty crayfish traps at the bottom of a 150-acre lake in northern Wisconsin. The objective is to determine whether fish and aquatic populations, decimated by the invaders, will grow in number as crayfish are removed.

Stephen Carpenter, a UW-Madison zoology professor and researcher at the Center for Limnology who is involved in this research, says: "If there is a tipping point in rusty crayfish ecology - so we can drive the crayfish to low levels using natural predation, plus heavy harvest by people - then we may have a tool for restoring the lakes that have been damaged by crayfish invasions."

Brian Roth | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Treatment of saline wastewater during algae utilization
14.05.2019 | Jacobs University Bremen gGmbH

nachricht Plastic gets a do-over: Breakthrough discovery recycles plastic from the inside out
07.05.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>