Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer weather, human disturbances interact to change forests

02.08.2004


While a rapidly changing climate may alter the composition of northern Wisconsin’s forests, disturbances such as logging also will play a critical role in how these sylvan ecosystems change over time.



Details will be presented on Friday, Aug. 6, at the annual Ecological Society of America conference in Portland, Ore.

University of Wisconsin-Madison researchers used a computer-modeling program to project 200 years of change in a forest in northwestern Wisconsin under three climate scenarios. In one scenario, they assumed no change from current temperature and precipitation conditions; in the other two scenarios, they used data from global forecasts that predict a hotter, wetter climate.


The model also took into account land development, along with processes like harvesting and changes in carbon storage due to climate change.

"If the climate were to warm, we project that many northern species would not be able to reproduce or compete well, and southern species that are adapted to warmer conditions, such as the oaks and hickories found in southern Wisconsin, would move in," says Robert Scheller, a UW-Madison postdoctoral forestry researcher with the College of Agricultural and Life Sciences.

In fact, Scheller and forestry professor David Mladenoff found that some species - including jack pine, red pine, white spruce, balsam fir and paper birch - would not be able to survive warmer conditions.

But human actions also contribute to this changing landscape, according to the results.

Says Scheller, "Human influence greatly modifies change in the forests, and logging and fragmentation would affect the northward migration of southern species during a period of climate warming."

Although scientists know that species migration occurs as the climate changes - there is evidence of this from the last ice age, Scheller says - for at least the next 100 years, disturbances such as harvesting or wind damage will continue to play a very important role in shaping forests.

"Harvesting helped create the forests we know today, and will continue to be a primary driver of change," he says. "If the climate changes, harvesting may provide opportunities for southern species to take hold in northern forests."

However, there is a natural lag between climate change and species migration, says Scheller, adding that this lag is especially evident in environments that are fragmented by human development, such as parts of northern Wisconsin.

The project was completed using a newly released forestry-modeling program called LANDIS II, which is an expansion of the previous LANDIS program. Forestry scientists at UW-Madison and the U.S. Forest Service North Central Research Station developed both programs.

Scheller and Mladenoff are now applying their new model to areas outside of Wisconsin. They are teaming with NASA to model insect defoliation using satellite images, and are working with the U.S. Forest Service to examine the effects of fire in the pine barrens of New Jersey.

Robert Scheller | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht CO2 tracking in space
25.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Project provides information on energy recovery from agricultural residues in Germany and China
13.02.2020 | Deutsches Biomasseforschungszentrum

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

Lab-free infection test could eliminate guesswork for doctors

26.02.2020 | Life Sciences

Scientists develop algorithm for researching evolution of species with WGD

26.02.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>