Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research examines bio-pesticides battle with both pests and regulators

02.08.2004


A joint research proposal between University of Warwick scientists at Warwick HRI and researchers in the University’s Department of Politics and International Studies has won a £316,000 grant from the Research Councils’ Rural Economy and Land Use programme for a project on the science and regulation of bio-pesticides.



Consumers, retailers and environmentalists are calling for reductions in the use of chemical pesticides. One potentially environmentally friendly solution is to use so-called bio-pesticides, which are based on naturally occurring living organisms, such as fungi that attack insects. However there is a need for a greater scientific understanding of the operation of these bio-pesticides and in particular their impact on the sustainability of pest management. There is also a requirement to evaluate the effect of government regulations on the development and uptake of bio-pesticides. The current regulatory system was designed for chemical pesticides, and innovations may be required to make it more suitable for the use of bio-pesticides.

This programme will draw on research strengths both in biological and social sciences. Warwick HRI’s new status as part of the University of Warwick has facilitated the creation of just such a research partnership of Warwick HRI bio-pesticide scientist Dr Dave Chandler and leading rural economy and society researcher Professor Wyn Grant in the University of Warwick’s Department of Politics and International Studies.


Dr Dave Chandler will carry out the research on the sustainability of the use of bio-pesticides. In particular he will look at whether they persist in the environment when released on a large scale and how they interact with local microbial populations. For his study he will use as a model system the entomopathogenic fungus Metarhizum flavoviride which will be used as a bio-pesticide against aphids on lettuce.

Professor Wyn Grant will probe how the current UK pesticide regulatory system impacts on the development and use of bio-pesticides. Current UK pesticide regulation has been built around the use of chemical insecticides. This chemical regulatory model focuses attention on the short term economic costs of pest control measures rather than their long term impact on the environment and the sustainability of farming systems. Bio-pesticides have potential to bring long term environmental protection and social benefits and any regulatory innovation that would take proper account of such innovations would be a significant spur to the future development of bio-pesticide products.

In fact rather than actively encouraging the development of bio-pesticides the current regulatory system has seen a poor uptake of microbial bio-pesticides in the UK. Much of the development of microbial bio-pesticides has been initiated in the public sector and taken up by small and medium sized companies who have been discouraged from taking a final product to market because of the prohibitive costs of the registration fee and associated data package. Professor Wyn Grant’s study of UK pesticide regulation will include a comparative study with the legislation based pesticide regulation framework in Denmark.

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Project provides information on energy recovery from agricultural residues in Germany and China
13.02.2020 | Deutsches Biomasseforschungszentrum

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Time-resolved measurement in a memory device

19.02.2020 | Physics and Astronomy

Mixed-signal hardware security thwarts powerful electromagnetic attacks

19.02.2020 | Information Technology

Could water solve the renewable energy storage challenge?

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>