Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research examines bio-pesticides battle with both pests and regulators

02.08.2004


A joint research proposal between University of Warwick scientists at Warwick HRI and researchers in the University’s Department of Politics and International Studies has won a £316,000 grant from the Research Councils’ Rural Economy and Land Use programme for a project on the science and regulation of bio-pesticides.



Consumers, retailers and environmentalists are calling for reductions in the use of chemical pesticides. One potentially environmentally friendly solution is to use so-called bio-pesticides, which are based on naturally occurring living organisms, such as fungi that attack insects. However there is a need for a greater scientific understanding of the operation of these bio-pesticides and in particular their impact on the sustainability of pest management. There is also a requirement to evaluate the effect of government regulations on the development and uptake of bio-pesticides. The current regulatory system was designed for chemical pesticides, and innovations may be required to make it more suitable for the use of bio-pesticides.

This programme will draw on research strengths both in biological and social sciences. Warwick HRI’s new status as part of the University of Warwick has facilitated the creation of just such a research partnership of Warwick HRI bio-pesticide scientist Dr Dave Chandler and leading rural economy and society researcher Professor Wyn Grant in the University of Warwick’s Department of Politics and International Studies.


Dr Dave Chandler will carry out the research on the sustainability of the use of bio-pesticides. In particular he will look at whether they persist in the environment when released on a large scale and how they interact with local microbial populations. For his study he will use as a model system the entomopathogenic fungus Metarhizum flavoviride which will be used as a bio-pesticide against aphids on lettuce.

Professor Wyn Grant will probe how the current UK pesticide regulatory system impacts on the development and use of bio-pesticides. Current UK pesticide regulation has been built around the use of chemical insecticides. This chemical regulatory model focuses attention on the short term economic costs of pest control measures rather than their long term impact on the environment and the sustainability of farming systems. Bio-pesticides have potential to bring long term environmental protection and social benefits and any regulatory innovation that would take proper account of such innovations would be a significant spur to the future development of bio-pesticide products.

In fact rather than actively encouraging the development of bio-pesticides the current regulatory system has seen a poor uptake of microbial bio-pesticides in the UK. Much of the development of microbial bio-pesticides has been initiated in the public sector and taken up by small and medium sized companies who have been discouraged from taking a final product to market because of the prohibitive costs of the registration fee and associated data package. Professor Wyn Grant’s study of UK pesticide regulation will include a comparative study with the legislation based pesticide regulation framework in Denmark.

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>