Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

$10M Awarded to Ocean Sites for Long-Term Ecological Research

28.07.2004


Coral reefs and coastal upwelling ecosystems are the subjects of two new Long-Term Ecological Research (LTER) sites awarded funding by the National Science Foundation (NSF). With the addition of the Moorea Coral Reef LTER Site and the California Current Ecosystem LTER Site, there are now 26 NSF-funded sites in the LTER network. The two newest sites will receive approximately $820,000 for the next six years, for a total of about $ 5 million each.



“These two new sites significantly augment the LTER network, which had included only one marine site, in the Antarctic,” says Henry Gholz, director of NSF’s LTER program. “The awards ensure that high biodiversity and productivity ecosystems in most of the world’s major biomes, both on land and in the oceans, are represented.”

Moorea Coral Reef LTER Site


The new Moorea Coral Reef LTER site will be located at the site of the University of California’s field laboratory on the island of Moorea in French Polynesia.

Coral reefs rank near the top of all ecosystems when it comes to biodiversity and annual productivity. “These large and diverse communities are fueled by efficient nutrient recycling processes, and by the structure reef-building corals provide,” says Phil Taylor, director of NSF’s biological oceanography program. “Stony corals are the foundation upon which tens of thousands of other species rely.”

Research at the new French Polynesia site will help scientists better understand coral reef processes that drive the functions of this ecosystem; the nature of coral reef animal and plant community structure and diversity; and the factors that determine the abundance and dynamics of related populations. “This understanding,” says Taylor, “will allow us to make more accurate predictions of how coral reef ecosystems respond to environmental change, whether human-induced or from natural cycles.”

The four principal investigators for the award are affiliated with the University of California at Santa Barbara (Russell Schmitt and Sally Holbrook), and California State University at Northridge (Robert Carpenter and Peter Edmunds). In addition, scientists at the University of Hawaii, the University of California at Santa Cruz, Scripps Institution of Oceanography and the University of California at Davis comprise the interdisciplinary team of ecologists, physical oceanographers, paleoceanographers and population geneticists on the project.

California Current Ecosystem LTER Site

The California Current wends along just off California shores as part of the north Pacific Ocean’s circulation. The current is the driving force behind what’s known as a coastal upwelling biome, among the most productive coastal ecosystems in the world’s oceans. “The California Current System sustains active fisheries for a variety of finfish and shellfish, modulates weather patterns and the hydrologic cycle of much of the western United States, and plays a vital role in the economy of myriad coastal communities,” says Taylor.

Understanding the mechanism of change in coastal ecosystems is important to the management of living and non-living resources in the coastal zone, scientists believe. “In the California Current System, successful management of commercially important resources such as anchovy, sardine, several species of Pacific salmon, squid, Dungeness crab, abalone and others requires knowledge of the causes and consequences of system variability,” says Taylor.

The California Current System is the eastern limb of the large, clockwise circulation of the north Pacific Ocean. As water from the westward drift turns south and becomes the California Current, it brings with it cool, fresh water from the sub-arctic region. The California Current System off central and southern California consists of the broad, southward-flowing California Current; a persistent but variable subsurface California Undercurrent centered on the continental slope that carries water poleward from the tropics; and a highly seasonal circulation over and near the continental shelf, which shifts from a windward-driven equatorward flow that brings coastal upwelling in spring and summer, to a poleward flow in fall and winter.

Scientists working at the California Current Ecosystem LTER Site will conduct research on how the influences of El Nino and the Pacific Decadal Oscillation, a decades-long climate phenomenon, as well as multi-decadal warming trends noted in records kept by research institutions along the California coast, affect the California Current System. Researchers hope to develop an understanding of how these phenomena affect changes in food webs, predator-prey relationships, movement of organisms into and out of the region and the transfer of assemblages of organisms along the California coast.

The five principal investigators for the award blend expertise in ocean ecology, and chemical and physical oceanography, and are affiliated with the Scripps Institution of Oceanography in La Jolla, California: Mark Ohman; Katherine Barbeau; Ralf Goericke; Michael Landry; and Arthur Miller. Scientists from the National Oceanic and Atmospheric Administration (NOAA)’s National Marine Fisheries Service, Georgia Institute of Technology, Duke University and Point Reyes Bird Observatory round out the interdisciplinary team.

| newswise
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>