Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fall And Rise Of Forest Ecosystems

23.07.2004


Forest ecologists have long wondered why forests decline in the absence of catastrophic disturbances. A new study, in part funded by the British Ecological Society, and published in this week’s Science, has shed new light on this problem.

This study investigated natural forested stands across each of six ’chronosequences’ or sequences of soils of different ages since the most recent major disturbance. These sequences were located in a range of climatic zones, including northern Sweden (a series of forested islands near Arjeplog), Alaska, Hawaii, eastern Australia and two locations in southern New Zealand. All sequences consisted of forest stands on soils ranging in age from those formed very recently to those at least several thousand years old; the oldest soils studied were 4.1 million years old in Hawaii.

For all six sequences, forest biomass (mass of trees per unit area) increased initially as soil fertility increased. However, after thousands to tens of thousands of years, forest biomass declined sharply for all sequences, to a level where some sites could no longer support trees. The researchers found that this decline in all cases was due to reduced levels of plant-available phosphorus relative to nitrogen in the soil. As soils age, phosphorus becomes increasingly limiting for trees because it is not biologically renewable in the ecosystem. Conversely, nitrogen is biologically renewable (because atmospheric nitrogen can be converted by soil bacteria into forms of nitrogen that trees can use), so nitrogen limitation does not contribute to forest decline in these systems, contrary to popular views. There was also evidence from this study that phosphorous limitation during stage of forest decline negatively affected soil organisms, and therefore reduced their potential to release nutrients from the soil for maintaining tree growth.



These results have several implications. First they show that major disturbances are necessary for rejuvenating forest ecosystems. Disturbances which rejuvenate the system vary for different forests, but can include for example wildfire, glaciation, or volcanic activity. In the absences of these disturbances productive forests do not perpetuate indefinitely; eventually phosphorous becomes sufficiently limiting that forests with a high standing biomass can no longer be maintained. Second, they reveal that high biomass forest stands represent a transitional phase in the long term (in the order of thousands to tens of thousands of years) and if left without major disturbances will then decline. Finally they show that very similar patterns of decline, and mechanisms behind this decline, occur for very different types of forest throughout the world, spanning the boreal, temperate and tropical climatic zones.

The study was conducted by David Wardle from the Swedish University of Agricultural Sciences (Sweden) and Landcare Research (New Zealand), Richard Bardgett from Lancaster University (U.K.) and Lawrence Walker from the University of Nevada (USA).

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>