Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming could lead to fast freeze, warns University of Ulster scientist

26.05.2004


Dramatic climate change as a result of global warming could happen in a single lifetime – instead of being a slow process evolving over centuries, according to a University of Ulster academic.



Professor Marshall McCabe of the School of Environmental Sciences said that given the right set of circumstances, “a climate can flip in a lifetime”. And the result could be the return of Arctic conditions last seen in the British Isles thousands of years ago.

He said that the North Atlantic ocean, which controls our climate, is very sensitive to change.


For example, a substantial intrusion of fresh water into the North Atlantic from melting ice-caps may trigger rapid changes that could put the UK and Ireland into the deep freeze for centuries.

Professor McCabe, who is Professor of Quaternary Science at the University of Ulster, has found evidence of just such an event 19,000 years ago.

At that time, several ice sheets in the northern hemisphere melted, adding a five metre ‘cap’ of fresh water to the North Atlantic ocean.

In normal circumstances the ocean overturns constantly. Heat is drawn off from water at the top of the ocean which then sinks and flows south beneath the equator. New, warmer water is drawn northwards.

It is this cycle that gives the British Isles their temperate climate, despite being on the same latitude as Alaska.

But after the icesheets melted into the north Atlantic 19,000 years ago, the fresh water ‘cap’ was lighter than the salt water, and remained on the surface. This suppressed the normal circulation of deep water flowing south beneath the equator – leading to the return of Arctic conditions to Ireland.

Professor McCabe’s research, published in the prestigious journal Science, showed:

There was a rapid rise in the sea level around 19,000 years ago at Kilkeel, Co Down, due to the collapse of ice sheets in the northern hemisphere.

He was able to accurately date this sea level rise by carbon-dating forams, pinhead-sized organisms found on the sea. His research involved testing around 20,000 forams per sample.

The fresh water ‘cap’ suppressed the circulation of warm surface water from the south to the north Atlantic oceans - leading to thousands of years of Arctic conditions in Ireland and Great Britain.

Professor McCabe said: “Heat is pulled from the tropics to the north. We are on roughly the same latitude as Alaska and if it were not for the circulation of water between the north and south Atlantic oceans we would be frozen.

“But that could happen if the climate was to flip, through increased freshwater in the North Atlantic - as happened 19,000 years ago”.

David Young | University of Ulster
Further information:
http://www.ulster.ac.uk/news/releases/2004/1186.html

More articles from Ecology, The Environment and Conservation:

nachricht Loss of habitat causes double damage to species richness
02.04.2019 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>