Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In deep with marine environmental surveys

24.05.2004


Studies of seabed algae and sandbanks have shown the potential of using autonomous sensors for environmental monitoring. SUMARE has proven them to be more efficient, cost-effective and accurate.



Led by the Management Unit of the North Sea Mathematical Models at the Royal Belgian Institute of Natural Sciences, one of the tasks of this IST programme-funded project was to map maerl, a calcareous alga which forms large deposits or ’beds’ on the seabed of Brittany, the North Sea and Ireland. It has a variety of commercial applications including as a soil fertiliser and as a treatment for reducing the acidity of drinking water.

It is currently extracted from the seabed in large volumes, though around the UK activity has slowed due to conservation concerns as a habitat for a large number of other algae and other sealife, such as scallops.


From a conservation and economic viewpoint, little is known about the spatial distribution of maerl. Traditional maerl survey techniques relied on a combination of dredge survey and sampling techniques. While effective at gathering detailed information at specific locations, they cannot deliver information on larger scale attributes such as the distribution of living and dead material. To do so requires massive investment of time and finance, making such methods impractical and uneconomic.

But detailed mapping of maerl beds helps identify dead maerl. This is commercially important since its extraction is preferred as it has less associated organic material, and so requires less processing before sale. As project member, Alain Norro from the Royal Belgian Institute of Natural Sciences explains: "by focusing on dead mearl, living areas are undisturbed and left to grow, so that ultimately the crop of dead maerl can be sustained."

Video classification

One of the innovative elements of SUMARE was the development of an image classification algorithm which can classify video footage of maerl recorded as the video camera passes over the seabed. The algorithm has been developed to recognise living maerl, dead maerl, sand and macroalgae, at a variety of altitudes off the seabed and is fully automatic - the sensor learns statistical models that describe the relevant characteristics of the observed field.

Whilst classification of images may previously have been possible using raw video footage and skilled eye assessment, the SUMARE image classification algorithm is more objective, accurate and repeatable, as well as being automatic. This is considerably more efficient when collecting information on the physical characteristics. The ability to concentrate resources on mapping the most relevant features leads to considerable savings in survey costs whilst improving the results.

Another element of the approach taken by the SUMARE project relates to ’information guidance’ and represents a transfer of control of the surveying operation from the user to the autonomous underwater vehicle (AUV), again saving time and money. Instead of travelling along a predetermined path the AUV periodically alters its route to maximise data collection in line with the observation goals, as the distribution of the surveyed object is rarely uniform.

Exploiting sandbanks

The other application tested by SUMARE, relates to government-sanctioned offshore exploitation of sand on the Belgian continental shelf. However, there is concern that growing exploitation could lead to a reduction in size - or even disappearance - of the banks. In turn this could affect water currents and erosion/sedimentation characteristics of the area, and lead to undesirable impacts on the nearby beaches.

As such the Flemish sandbanks have been subject to monitoring for several years. Traditionally, depth measurements are done by ships equipped with hydrographical instruments. But that is time-consuming, expensive (at a cost of €10,000 per day per ship) and at low tide, navigating the banks can be difficult. Mini-autonomous underwater vehicles, as demonstrated by SUMARE, offer a practical, more efficient and cheaper alternative.

SUMARE’s intensive data collection and analysis has shown that human activity on the sandbank could have had an impact on the shape and size of the sandbanks over previous years. However without further detailed analysis, the question of sustainability of the activity remains unanswered. Norro adds: "What is certain is that further investigation supported by intensified monitoring by AUVs, based on the SUMARE design, will form a key contribution," since it enables a faster and more cost-effective answer to be reached.

Potential for other marine surveys

As Norro points out, there is tremendous potential: "the approaches, algorithms and methodologies used by the team are platform independent, all the visual tracking, spatial statistical modelling and video segmentation research can be used on other platforms such as more powerful underwater vehicles."

The team believe that their techniques could be applied to a variety of marine survey tasks where the focus of study involves a feature with distinct visual attributes. In practice, according to the UN’s Environment Programme’s coral reef expert, Emily Corcoran, "this could involve other seabed habitats, such as seagrass beds, reefs and more simple bedrock outcrops," especially important when "the livelihood of one billion people worldwide depends on reefs." In addition, the sensor-driven guidance systems are of potential interest in pollution surveillance, and the detection and localisation of underwater mines.

Future work for the project team members will focus around further commercialisation of SUMARE’s techniques and their application to a wider range of environmental surveying and monitoring situations.

Contact:
Alain Norro
Institut Royal des Sciences Naturelles de Belgique
Unit of Mathematical Models of North Sea
Belgium
Tel: +32-2-7732111
Fax: +32-2-7706972
Email: a.norro@mumm.ac.be

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&ID=65150

More articles from Ecology, The Environment and Conservation:

nachricht Robotic fish to replace animal testing
17.06.2019 | Otto-von-Guericke-Universität Magdeburg

nachricht Marine oil snow
12.06.2019 | University of Delaware

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

Robocabs: The mobility of the future?

25.06.2019 | Studies and Analyses

Skipping Meat on Occasion May Protect Against Type 2 Diabetes

25.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>