Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is that plant a tortoise or a hare? Answer predicts its response to environmental change

22.04.2004


As the spring foliage grows, each plant, like an entrepreneur, builds its leaves according to an economic strategy. Some plants live like the proverbial hare, following a "live fast, die young" strategy; their leaves produce and consume energy quickly but soon "burn out" or fall victim to bad weather or hungry herbivores. Other leaves are more tortoiselike, taking a "live slowly and last long" approach. A new study has revealed the global continuum of leaf economics, documenting where 2,548 species growing at 175 sites fit along the "tortoise-hare" continuum. For the first time, scientists can equate plants in Amazonian rain forest, Minnesota prairie or Alaskan spruce woods using the same set of economic strategies. Moreover, a plant’s position on the continuum predicts how it will likely respond to climate change and other factors. The work will be published in the April 22 issue of the journal Nature.



"This is the most comprehensive study of the physiology of natural vegetation ever done," said author Peter Reich, professor of forest resources at the University of Minnesota. "Leaves are little factories. As a factory, each can make money (energy) in a big hurry, but at the risk of running down its equipment fast. Or, a factory can have a slow and steady output. It’s fundamental tradeoff for every leaf, and the strategy it follows determines how it reacts to change." Besides Reich, authors of the paper were Ian Wright (first author) and Mark Westoby of Macquarie University, Australia, Jeannine Cavender-Bares and Jacek Oleksyn from the University of Minnesota, and a long list of researchers from every inhabited continent.

It all began in 1985, when Reich was a postdoctoral fellow at Cornell University. He compared the rates different plants captured and stored energy through photosynthesis and the rates they used energy--a process called respiration. He noticed that two fast-growing "hare" plants--poplar trees and soybeans--were more susceptible to ozone pollution than slower-growing "tortoise" pine trees.


"It’s because poplar trees exchanges gases faster than pine," said Reich. "Therefore, poplar takes in more ozone than pine. Soybeans, wheat and other crops are bred to grow fast, and they tend to be like poplars. This was an important predictor of how these trees and crops would respond to pollution. I wondered how they had come to have these traits in the first place and what the implications were for responses to changes in environment more broadly. So I began to physiologically compare plants whose leaves might have these contrasting economic strategies. I’ve carried portable photosynthesis sensors to more than 20 sites on four continents."

Twenty years later, Reich and his colleagues can say that plants like hares and tortoises are found in every ecosystem, and so plants from boreal forest, rainforest, desert and everywhere else can be compared. For example, "hares" like aspen and birch are better able to use resources when conditions get better. Therefore, if rainfall or nutrient levels increased, these trees would do well. But if conditions were to get drier or less fertile, the slower-growing "tortoises"--such as spruce, hemlock and other evergreens--would be favored, he said. Similarly, if there is little sunlight available in the understory of a forest, the "tortoises" can scale back their operations and live with it. In general, "hares" are good at "ramping up" when conditions improve, but tortoises are better at controlling their energy consumption when times get tough. Thus, the theory works well as a predictor of responses to increasing nitrogen pollution, added Reich.

The researchers also noted that leaves are built in accordance with their economic strategy. Leaves of fast-growing plants tend to be thin and flimsy and full of expensive nutrients like nitrogen and phosphorus. The thinner a leaf, the better the chance that a ray of sunlight will penetrate to the leaf’s photosynthetic machinery--but the greater its chance of being blown or chomped off. And the expensive invesstments in nutrients only pay off when there is a lot of sunlight and conditions are generally good. In contrast, slow growth allows for thick, sturdy leaves that resist weather and herbivores and can pay off under challenging conditions.

Weeds usually fall into the hare category, said Reich. Their strategy is to grow fast and quickly release seeds, and they tend to grow in places where the vegetation is disturbed.

Data for the study were collected from the University of Minnesota’s Cedar Creek Natural History Area, forests in Wisconsin and Minnesota, the New Mexican desert, the Appalachian Mountains, the Amazon Basin, the Australian Outback and numerous other places. The work was supported in part by the National Science Foundation and the U.S. Department of Energy.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>