Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon University researchers create nanoparticles to clean up contaminated sites

01.04.2004


Researchers at Carnegie Mellon University and the U.S. Department of Energy are developing "smart" nanoparticles to clean up environmental toxins that resist conventional remediation methods. This research is being presented by Greg Lowry on Wednesday, March 31, at the 227th annual meeting of the American Chemical Society in Anaheim, Cal. (ENVR 52, Marriott-Grand Ballroom D).



Pollutants in the ground that do not easily mix with water, such as organic solvents, are a continued source of groundwater pollution until they are removed.

"These subsurface pollutants are a particularly difficult problem because there are few reliable technologies to locate and destroy them," said Lowry, a professor of civil and environmental engineering at Carnegie Mellon. "Our team of environmental engineers, chemical engineers, chemists and physicists is developing a process very similar to a targeted drug delivery system to target and destroy these dangerous groundwater toxins," he said.


A team of investigators, including Lowry, Sara Majetich, Krysztof Matyjaszewski, David Sholl and Robert Tilton of Carnegie Mellon and Paul Meakin, George Redden and Harry Rollins of the Energy Department, designed nanoparticles with the potential to reach underground pockets of chlorinated organic solvent called trichloroethylene (TCE). This chemical is still used extensively to remove grease from metal parts. Approximately 60 percent of the 1,400 contaminated sites on the National Priorities List, the nation’s most hazardous waste sites, are contaminated with this suspected carcinogen, according to Lowry.

TCE separates out from water as droplets, much like oil or water. But underground pockets of this chemical can steadily release droplets into porous soil layers called aquifers, which supply 50 percent of the nation’s drinking water. Left untreated, billions of gallons of groundwater stand to be contaminated by TCE, Lowry said.

To make the nanoparticles used in the current research, the investigators started with a core reactive iron that quickly breaks down chlorinated organic solvents into harmless byproducts. The research group of Matyjaszewski, a professor of chemistry and director of the Center for Macromolecular Engineering at the Mellon College of Science, coated these iron molecules with two polymer shells. An outer, "water-loving" shell would enable particles to travel through an aquifer. Once it reached a water-TCE interface, an inner "water-hating" shell would make the particles stick there and allow the particle’s reactive core to break down this toxic residue.

The nanoparticles were created by atom transfer radical polymerization (ATRP). This synthetic method was developed by Matyjaszewski to precisely control the formation of polymers at the nanoscale level. Using ATRP, scientists can mass produce high quality materials that combine very different structural and functional properties.

Nanoparticles are ideal agents to treat underground pockets of chlorinated organic solvents because they can move easily through even the smallest pores within soil. The current study is focused on developing particles with field testing as the next segment. This nanoparticle technology also could be adapted to clean up spills of other chlorinated solvents.

It has been estimated that the cost of cleaning up the many U.S. groundwater sites contaminated by TCE could reach $1 trillion, according to the Department of Energy. Current technologies are limited in their effectiveness. Typically, they involve containing the problem by treating a steady plume of organic solvent as it is slowly released from the source. Taking the targeted nanoparticles directly to the source of the contamination would remove it and solve the problem faster, Lowry said. This step would significantly lower cleanup costs. This research also will provide a better understanding of how small particles transport in a subsurface. Researchers from Carnegie Mellon and the Idaho National Engineering and Environmental Laboratory received $1.7 million from the Department of Energy for the three-year study.


An illustration of these nanoparticles is available by contacting either Chriss Swaney at 412-268- 5776 or Lauren Ward at 412-268-7761.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Increasing frequency of ocean storms could alter kelp forest ecosystems
30.10.2018 | University of Virginia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>