Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid rain study reaches milestone, confirms soil nutrient depletion

29.03.2004


Researchers studying the environmental consequences of acid rain have reached an important milestone, adding evidence for a theory that has been the focus of much scientific debate. Publishing in the December, 2003 issue of the Soil Science Society of America Journal, a team at the University of Maine reported that a modest addition of acid in a paired watershed experiment resulted in a decrease of crucial nutrients in forest soils.



For more than 30 years, scientists in Europe and North America have recognized that acid rain could spur the loss of nutrients that are important for growing trees. Nutrients moving out of the soil into lakes and streams could also affect water quality. Nevertheless, observations that such losses have occurred have often been dismissed as extreme cases or as a result of natural changes in forested landscapes.

At the Bear Brook Watershed in Hancock County, Maine, a research team led by University of Maine scientists has now documented that under carefully controlled conditions, treating a watershed with additional acids accelerates the loss of two critical nutrients, calcium and magnesium.


"No one else has shown this at an ecosystem scale in this region," says Ivan Fernandez, UMaine professor of soil science and lead author of the paper. "It shows that we can experimentally induce (nutrient) depletion in a Maine forest with modest treatment." Co-authors were Lindsey Rustad of the USDA Forest Service; Stephen A. Norton and Steve Kahl, both of UMaine; and Bernard J. Cosby of the University of Virginia.

The Bear Brook Watershed Manipulation project began in the mid-1980s on land now owned by International Paper with funding from the U.S. Environmental Protection Agency. Located on Lead Mountain in Down East Maine, the site includes two side-by-side forested watersheds. Scientists constructed concrete weirs on each stream at the base of each watershed in collaboration with the U.S. Geological Survey. They installed continuous monitoring equipment to track changes in hydrology and water quality. In 1989, they began a bi-monthly routine of spreading ammonium sulfate, a commercial fertilizer, on the West Bear watershed to mimic high levels of acid rain. Subsequent studies have focused on changes to soil, water and vegetation on both the treated and untreated reference watersheds. What the Bear Brook research does not yet conclusively show, Fernandez adds, is whether the loss of soil nutrients is being balanced by gains from other processes in the untreated watershed. "It seems clear that the treatments have exceeded the natural supplies of nutrients in the treated watershed," says Fernandez. "Because there are no historical data on soils for comparisons, conclusions about the untreated watershed will require more time." Understanding the full nutrient picture in the untreated East Bear watershed would provide information that is representative of actual conditions in Maine and the Northeast.

"We can infer what is occurring from stream chemistry, and indeed, there appears to be a slow loss of base cations (nutrients) that may or may not be balanced by soil weathering processes," adds Fernandez. "Our treatment watershed suggests that whether it is happening or not across the Maine landscape, it will definitely happen with a little push."

An ongoing synthesis of data from acid rain research sites in North America and Europe includes the Maine research group and the Bear Brook site. Almost none of the watersheds show evidence of increasing nutrient concentrations in soils and surface waters, but many show evidence of a decreasing trend, says Fernandez. Results from the synthesis are still being developed.

The loss of nutrients due to acid rain is likely a regional phenomenon, although consequences for New England’s forests, lakes and streams vary across the landscape. These effects may become increasingly important to forest health if predicted climate warming occurs, Fernandez adds. Acidic inputs of nitrogen and sulfur are likely to interact with temperature and moisture changes in forested ecosystems.

Ivan Fernandez | EurekAlert!
Further information:
http://www.umaine.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>