Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid rain study reaches milestone, confirms soil nutrient depletion

29.03.2004


Researchers studying the environmental consequences of acid rain have reached an important milestone, adding evidence for a theory that has been the focus of much scientific debate. Publishing in the December, 2003 issue of the Soil Science Society of America Journal, a team at the University of Maine reported that a modest addition of acid in a paired watershed experiment resulted in a decrease of crucial nutrients in forest soils.



For more than 30 years, scientists in Europe and North America have recognized that acid rain could spur the loss of nutrients that are important for growing trees. Nutrients moving out of the soil into lakes and streams could also affect water quality. Nevertheless, observations that such losses have occurred have often been dismissed as extreme cases or as a result of natural changes in forested landscapes.

At the Bear Brook Watershed in Hancock County, Maine, a research team led by University of Maine scientists has now documented that under carefully controlled conditions, treating a watershed with additional acids accelerates the loss of two critical nutrients, calcium and magnesium.


"No one else has shown this at an ecosystem scale in this region," says Ivan Fernandez, UMaine professor of soil science and lead author of the paper. "It shows that we can experimentally induce (nutrient) depletion in a Maine forest with modest treatment." Co-authors were Lindsey Rustad of the USDA Forest Service; Stephen A. Norton and Steve Kahl, both of UMaine; and Bernard J. Cosby of the University of Virginia.

The Bear Brook Watershed Manipulation project began in the mid-1980s on land now owned by International Paper with funding from the U.S. Environmental Protection Agency. Located on Lead Mountain in Down East Maine, the site includes two side-by-side forested watersheds. Scientists constructed concrete weirs on each stream at the base of each watershed in collaboration with the U.S. Geological Survey. They installed continuous monitoring equipment to track changes in hydrology and water quality. In 1989, they began a bi-monthly routine of spreading ammonium sulfate, a commercial fertilizer, on the West Bear watershed to mimic high levels of acid rain. Subsequent studies have focused on changes to soil, water and vegetation on both the treated and untreated reference watersheds. What the Bear Brook research does not yet conclusively show, Fernandez adds, is whether the loss of soil nutrients is being balanced by gains from other processes in the untreated watershed. "It seems clear that the treatments have exceeded the natural supplies of nutrients in the treated watershed," says Fernandez. "Because there are no historical data on soils for comparisons, conclusions about the untreated watershed will require more time." Understanding the full nutrient picture in the untreated East Bear watershed would provide information that is representative of actual conditions in Maine and the Northeast.

"We can infer what is occurring from stream chemistry, and indeed, there appears to be a slow loss of base cations (nutrients) that may or may not be balanced by soil weathering processes," adds Fernandez. "Our treatment watershed suggests that whether it is happening or not across the Maine landscape, it will definitely happen with a little push."

An ongoing synthesis of data from acid rain research sites in North America and Europe includes the Maine research group and the Bear Brook site. Almost none of the watersheds show evidence of increasing nutrient concentrations in soils and surface waters, but many show evidence of a decreasing trend, says Fernandez. Results from the synthesis are still being developed.

The loss of nutrients due to acid rain is likely a regional phenomenon, although consequences for New England’s forests, lakes and streams vary across the landscape. These effects may become increasingly important to forest health if predicted climate warming occurs, Fernandez adds. Acidic inputs of nitrogen and sulfur are likely to interact with temperature and moisture changes in forested ecosystems.

Ivan Fernandez | EurekAlert!
Further information:
http://www.umaine.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>