Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bighorn sheep threatened by climate change, finds new study

12.02.2004


A study led by researchers at the University of California, Berkeley, has linked population declines of California’s desert bighorn sheep with the effects of climate change. What’s more, many of the state’s remaining bighorn populations could face extinction if certain global warming forecasts for the next 60 years come true.


A desert bighorn sheep in the Old Woman Mountains of the Mojave Desert. (Photos by Clinton W. Epps, UC Berkeley)



In the study, which is published in the current issue of Conservation Biology, the authors found that of the 80 groups of desert bighorn sheep known to have roamed California’s mountains over the past century, 30 are now extinct.

In their investigation of the population decline, the researchers evaluated impacts ranging from contact with domestic livestock, which can lead to the spread of disease and competition for food, to poaching, mining, human disturbance and other factors. They also analyzed climatic variables such as temperature and precipitation that affect the availability of vegetation and dependable sources of spring water for the sheep.


UC Berkeley researchers have linked the effects of climate change with population declines of sheep in California, like this bighorn in the Old Woman Mountains of the Mojave Desert.

"Climate was consistently correlated with extinction in a way the other factors weren’t," said Clinton W. Epps, a doctoral student in environmental science, policy and management at UC Berkeley’s College of Natural Resources and lead author of the paper. "The harsh environment inhabited by desert bighorn sheep already has them walking on a knife’s edge. It doesn’t take too much to push them off. The bottom line is that more than one-third of the populations that were once known are now gone," said Epps.

From 1901 to 1987, the mean annual temperature in the deserts of the southwestern United States increased by about 1.8 degrees Fahrenheit, which is considered significant by climatologists. In addition, annual precipitation dropped about 20 percent in southeastern California over the last century. According to the study, groups of bighorn sheep were more likely to be lost in lower elevation mountains where there were higher average temperatures and less precipitation.

The authors examined population data on the state’s desert bighorn sheep, or Ovis canadensis nelsoni, collected since 1940 by biologists and California Department of Fish and Game researchers. They also used historical records from local areas where the sheep were known to have lived, but had since disappeared.

Desert bighorn sheep primarily live in small, isolated groups throughout the mountain ranges of the Sonoran, Mojave and Great Basin deserts of the southwestern United States. In southwestern California, they are also found in the Transverse and Peninsular mountain ranges.

Bighorn has been a species of concern among conservationists since they were first protected by California legislation in 1873. Statewide, the population of desert bighorn is estimated at 3,500. Bighorn in the Peninsular and Sierra Nevada mountain ranges are listed as state and federal endangered species.

"When you start losing bighorn sheep from some mountain ranges, it affects the collective population," said Dale R. McCullough, professor of ecosystem sciences at UC Berkeley’s College of Natural Resources and co-author of the paper. "Any decline in vegetation makes it more difficult for sheep to move among the different habitat clusters, which have become fewer and more spread out. Where they used to be able to move more readily to other mountain ranges to help repopulate or recolonize a habitat area, they must now cross an intervening desert."

McCullough noted that effects on populations from global warming are easier to detect in bighorn sheep than species of other large mammals that are more uniformly distributed over the landscape. "Other large mammals may shift north more gradually as a result of global warming, but that trend is harder to detect in the short term," he said.

The authors also looked at predictions of how climate may change in the next 60 years. For scenarios that predict a minimum temperature increase of 1.3 degrees Fahrenheit, there is no significant increase in the average probability of extinction. However, in scenarios that predict a more serious temperature increase of 3.6 degrees Fahrenheit and a 12 percent decrease in precipitation, the probability of extinction increases significantly from a baseline of 20 percent to 30 percent in the next 60 years.

Epps points out that this increase is an average of the extinction probability calculated for each group remaining in southern California. The risks for some individual groups, particularly those that live at lower elevations, are significantly higher.

"Our study illustrates how sensitive certain populations can be to changes in climate, whether man-made or not," said Epps. "Cases like this give conservationists some ammunition when talking about the importance of controlling global warming."

Other co-authors of the study are John D. Wehausen of the White Mountain Research Station, Vernon C. Bleich of the California Department of Fish and Game, and Jennifer L. Rechel of the U.S. Forest Service.

Sarah Yang | UC Berkeley
Further information:
http://www.berkeley.edu/news/media/releases/2004/02/10_sheep.shtml

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>