Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind tunnel tests could lead to healthier towns and cities

16.12.2003


It’s hardly an appealing thought but the overpowering fragrance of mothballs in a large wind tunnel could provide the key to improving air quality in our towns and cities.

The tests will improve our understanding of how pollution and heat behave at street level so that more effective ventilation methods can be developed.

The research will be carried out by scientists at the University of Reading in collaboration with EnFlo, based at the University of Surrey, with funding from the Engineering and Physical Sciences Research Council (EPSRC).



In towns and cities, pollution and heat released below building height (e.g. from cars and buildings) can be trapped at street level until ventilated to the air above. This can cause pollution “hotspots” which affect sufferers from respiratory diseases such as asthma; it can also contribute to an uncomfortably warm urban climate.

The new research will focus on the ventilation process. This process depends on street layout, wind speed and other factors, and understanding it is vital to taking effective action to improve urban climate and air quality.

The project will centre on wind tunnel tests that simulate airflow in urban areas. Cube and bar shapes representing a variety of urban settings will be placed in a wind tunnel and covered in naphthalene (an aromatic hydrocarbon used in mothballs), which is carried by airflow in a similar way to heat and pollution. By measuring the net loss of naphthalene after air has flowed over it, the rate of ventilation for the airflow and urban layout under examination can be calculated.

Interpretation of the results, which will require expertise in fluid dynamics, turbulence, heat transfer and meteorology, will enable the impact of different factors on ventilation to be assessed. An innovative feature of the research will involve the use of sensors to detect naphthalene concentrations. Deploying the sensors successfully will require trial and error, but will ultimately enable the extent and duration of “hotspots” to be determined.

The project team has already found that ventilation depends on street width, building height and the precise location of the pollution or heat source. Dr Janet Barlow, who is leading the team at the University of Reading’s Department of Meteorology, says: “Better understanding of heat and pollution ventilation rates will help inform the decision-making of architects and town planners. This should help to promote more sustainable, more comfortable and healthier urban environments”.

Jane Reck | EPSRC
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Treatment of saline wastewater during algae utilization
14.05.2019 | Jacobs University Bremen gGmbH

nachricht Plastic gets a do-over: Breakthrough discovery recycles plastic from the inside out
07.05.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>