Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Network of scientists is driving force in EU air pollution policy

04.12.2003


Atmospheric protection is a big challenge for the 21st century. In teaching scientists to design outputs that become the stuff of hard policy, the impact of EUROTRAC-2 is far-reaching.

Nitrogen oxides, sulphur dioxide and aerosols, major contributors to atmospheric pollution, do not respect national borders. But thanks to EUREKA project E! 1489 EUROTRAC-2, the EU’s largest ever study on atmospheric pollution, we know much more about where such pollutants were created, under what chemical disguises they travel and their human and environmental health consequences.

EUROTRAC-2 marked the second phase of the original EUROTRAC research initiative, which started 15 years ago and was among the first projects sponsored by EUREKA. This second phase involved over 300 research groups in 14 sub-projects, generating 900 scientific papers, more than 100 PhD theses and vastly expanding our collective knowledge bank.



The 25 countries involved in EUROTRAC-2 overcame scientific and language boundaries to study the many types of air pollution - from the particles flying off car tyres to the movement of clouds of pollutants 18 kilometres above the earth.

This hard evidence is helping to defeat scientific uncertainty, a huge barrier to political attempts to moderate global air pollution. With a clear remit to connect science to policy making, EUROTRAC-2 research is directly shaping negotiations to update the 1996 EU Air Quality Framework Directive and related legislation.

“Transboundary pollution is politically delicate, so the negotiators need a firm scientific platform,” says Dr Pauline Midgley of the National Research Centre for Environment and Health (GSF), Germany, who co-ordinated the project. “The major advance of EUROTRAC-2 was to promote truly interdisciplinary research, and I believe the results will heavily influence EU legislation. Air pollution is a continent-wide issue, and EUREKA helped scientists in Central and Eastern Europe to receive funds they may otherwise have had difficulty finding.”

Connecting science with policy

One of the sub-projects, SATURN, may help city dwellers breathe easier through its in-depth study on urban pollution in parking lots and between buildings.

Researchers used wind tunnels to study how air flows over different shapes of buildings. Finding that air pollutants concentrate within the turbulence created by some designs, SATURN concluded that existing air sampling is inadequate. “You can get different patterns of pollutants on different sides of a street,” says Nicolas Moussiopoulos from the Aristotle University in Greece. In future, city planners may be obliged to consider pollution ‘hot spots’ before building.

Other examples of sub-projects are TROPOSAT, which was partially funded by the European Space Agency and used its satellite data to track regional pollutant drifts, and EXPORT-2, which monitored the global transport of pollution.

EUROTRAC-2 is now complete, but this continent-wide network intends to continue with new funding under the EU’s 6th Framework Programme.

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/success-stories

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>